This study investigates bipolar and nonpolar resistive-switching of HfO 2 with various metal electrodes. Supported by convincing physical and electrical evidence, it is our contention that the composition of conducting filaments in HfO 2 strongly depends upon the metal electrodes. Nonpolar resistive-switching with the Ni electrode is attributed to the migration of metal cations and the corresponding electrochemical metallization. Conversely, oxygen-deficient filaments induced by anion migration are responsible for bipolar resistive-switching. It was also found that the characteristic nature of the conducting filaments influences many aspects of switching characteristics, including the switching power, cycling variations, and retention at elevated temperatures. V
Reduction in RESET current is crucial for future high-density resistive-switching memory. We have reported a unipolar-switching Ni/ HfO 2 / Si structure with low RESET current of 50 A and RESET power of 30 W. In addition, a unique cycling evolution of RESET current across more than two orders of magnitude allows us to probe into the evolvement of filament morphology at nanoscale, using a simple yet quantitative model. Filament morphology was found to depend strongly on the charge-dissipation current proportional to the powers of SET voltage. Moreover, the formation of inactive semiconductive filaments plays an important role in the reduction in RESET current.
The implementation of two-dimensional materials into memristor architectures has recently been a new research focus by taking advantage of their atomic thickness, unique lattice, and physical and electronic properties. Among the van der Waals family, Bi 2 O 2 Se is an emerging ternary two-dimensional layered material with ambient stability, suitable band structure, and high conductivity that exhibits high potential for use in electronic applications. In this work, we propose and experimentally demonstrate a Bi 2 O 2 Se-based memristor-aided logic. By carefully tuning the electric field polarity of Bi 2 O 2 Se through a Pd contact, a reconfigurable NAND gate with zero static power consumption is realized. To provide more knowledge on NAND operation, a kinetic Monte Carlo simulation is carried out. Because the NAND gate is a universal logic gate, cascading additional NAND gates can exhibit versatile logic functions. Therefore, the proposed Bi 2 O 2 Se-based MAGIC can be a promising building block for developing next-generation in-memory logic computers with multiple functions.
Effective doping techniques that precisely and locally control the conductivity and carrier polarity, i.e., electron (n-type) or hole (p-type), play a vital role in the remarkable success of Si-based technology and thus are critical for developing useful devices based on two-dimensional layered transition-metal dichalcogenides (TMDs). In contrast to the previous approaches based on either chemical doping or phase transition that requires complex chemicals or a high thermal budget and shows limited tunability and reliability, we propose a simple yet effective electron-beam irradiation (EBI) technique as an alternative for facilitating polarity transformation and transport modulation in selected regions. The EBI process may generate a precise amount of native chalcogen defects in both MoS2 and MoTe2 by controlling the EBI dosage. First-principles simulations support that the presence of native chalcogen vacancies may substantially reduce the band gaps of TMDs. In MoTe2, the progressive evolution of p-type conduction, n-type conduction, to metallic-like conduction can be observed with increasing EBI dosage. The high conductivity of metallic-like MoTe2 induced by EBI is comparable to that in a metallic 1T′-MoTe2, demonstrating the ability to selectively form extremely conductive regions in semiconducting TMDs. The proposed EBI technique could be potentially applied to a wide range of layered TMDs and facilitate the development of high-performance TMD-based devices in the future.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.