Disintegrins represent a new class of low molecular weight, RGD-containing, cysteine-rich peptides isolated from the venom of various snakes. They interact with the beta 1 and beta 3 families of integrins and their potency is at least 500-2000 times higher than short RGDX peptides. Analysis of the amino acid sequences of 14 different disintegrins suggests that the RGD sequence, in the spatial configuration determined by the appropriate pairing of the cysteine residues, functions as a cell recognition site. However, certain nonconserved amino acids appear to modify the activity of disintegrins, their specificity for various receptors, and their ability to compete specifically with various ligands.
Platelet-leukocyte interactions amplify inflammatory reactions, but the underlying mechanism is still unclear. CLEC5A and CLEC2 are spleen tyrosine kinase (Syk)-coupled C-type lectin receptors, abundantly expressed by leukocytes and platelets, respectively. Whereas CLEC5A is a pattern recognition receptor (PRR) to flaviviruses and bacteria, CLEC2 is the receptor for platelet-activating snake venom aggretin. Here we show that dengue virus (DV) activates platelets via CLEC2 to release extracellular vesicles (EVs), including exosomes (EXOs) and microvesicles (MVs). DV-induced EXOs (DV-EXOs) and MVs (DV-MVs) further activate CLEC5A and TLR2 on neutrophils and macrophages, thereby induce neutrophil extracellular trap (NET) formation and proinflammatory cytokine release. Compared to
stat1
−/−
mice, simultaneous blockade of CLEC5A and TLR2 effectively attenuates DV-induced inflammatory response and increases survival rate from 30 to 90%. The identification of critical roles of CLEC2 and CLEC5A/TLR2 in platelet-leukocyte interactions will support the development of novel strategies to treat acute viral infection in the future.
A potent platelet aggregation inducer, aggretin, was purified from Malayan-pit-viper (Calloselasma rhodostoma) venom by ionic-exchange chromatography, gel-filtration chromatography and HPLC. It is a heterodimeric protein (29 kDa) devoid of esterase, phospholipase A and thrombin-like activity. Aggretin (> 5 nM) elicited platelet aggregation with a lag period in both human platelet-rich plasma and washed platelet suspension. EDTA (5 mM), prostaglandin E1 (1 microM) and 3,4,5-trimethoxybenzoic acid 8-(diethylamino)octyl ester ('TMB-8'; 100 microM) abolished its aggregating activity, indicating that exogenous bivalent cations and intracellular Ca2+ mobilization are essential for aggretin-induced platelet aggregation. Neomycin (4 mM) and mepacrine (50 microM) completely inhibited aggretin (33 nM)-induced aggregation; however, creatine phosphate/creatine phosphokinase (5 mM, 5 units/ml) and indomethacin (50 microM) did not significantly affect its aggregating activity. Aggretin caused a significant increase of [3H]InsP formation in [3H]Ins-loaded platelets, intracellular Ca2+ mobilization and thromboxane B2 formation. Neomycin, a phospholipase C inhibitor, completely inhibited both the increase of [3H]InsP and intracellular Ca2+ mobilization of platelets stimulated by aggretin. A monoclonal antibody (6F1) directed against glycoprotein Ia/IIa inhibited platelet shape change and aggregation induced by aggretin. 125I-aggretin bound to platelets with a high affinity (Kd = 4.0 +/- 1.1 nM), and the number of binding sites was estimated to be 2119 +/- 203 per platelet. It is concluded that aggretin may act as a glycoprotein Ia/IIa agonist to elicit platelet aggregation through the activation of endogenous phospholipase C, leading to hydrolysis of phosphoinositides and subsequent intracellular Ca2+ mobilization.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.