Carbon monoxide (CO) is a toxic gas, and environmental pollutant. Its detection and control in residential and industrial environments are necessary in order to avoid potentially severe health problems in humans. In this review paper, we discuss the importance of furthering research in CO sensing technologies for finding the proper material with low-range detection ability in very optimum condition. We build our discussion through the perspective of a cyber-physical system (CPS) modeling framework, because it provides a comprehensive framework to model and develop automated solutions for detection and control of poisonous chemical compounds, such as the CO. The most effective CO sensors, then, can be used in CPS network to provide a pathway for real-time monitoring and control in both industrial and household environment. In this paper, first, we discuss the necessity of CO detection, the proposal of a basic CPS framework for modeling and system development, how the CPS-CO model can be beneficiary to the environment, and a general classification of the various CO detection mechanisms. Next, a broad overview emphasizes the sensitivity, selectivity, response and recovery time, low concentration detection ability, effects of external parameters and other specifications that characterize the performance of the sensing methods proposed so far. We will discuss recent studies reported on the use of metal oxide semiconductor (MOS) sensing technologies for the detection of CO. MOS based micro-sensors play an important role in the measurement and monitoring of various trace amounts of CO gas. These sensors are used to sense CO through changes in their electrical properties. In addition to MOS based sensors, optical sensing methods have recently become popular, due to their increased performance. Hence, a brief overview of newly proposed optical based CO detection methods is provided as well.
Enhancement of switching in nanoelectronics, Carbon Nano Tube (CNT) could be utilized in nanoscaled Metal Oxide Semiconductor Field Effect Transistor (MOSFET). In this review, we present an in depth discussion of performances Carbon Nanotube Field Effect Transistor (CNTFET) and its significance in nanoelectronic circuitry in comparison with Metal Oxide Semiconductor Field Effect Transistor (MOSFET). At first, we have discussed the structural unit of Carbon Nanotube and characteristic electrical behaviors beteween CNTFET and MOSFET. Short channel effect and effects of scattering and electric field on mobility of CNTFET and MOSFET have also been discussed. Besides, the nature of ballistic transport and profound impact of gate capacitance along with dielectric constant on transconductance have also have been overviewed. Electron ballistic transport would be the key in short channel regime for high speed switching devices. Finally, a comparative study on the characteristics of contact resistance over switching capacity between CNTFET and MOSFET has been addressed.
Carbon monoxide (CO) is a toxic gas, and environmental pollutant. Its detection and control in residential and industrial environments are necessary in order to avoid potentially severe health problems in humans. In this review paper, we discuss the importance of furthering research in CO sensing technologies for finding the proper material with low-range detection ability in very optimum condition. We build our discussion through the perspective of a cyber-physical system (CPS) modeling framework, because it provides a comprehensive framework to model and develop automated solutions for detection and control of poisonous chemical compounds, such as the CO. The most effective CO sensors, then, can be used in CPS network to provide a pathway for real-time monitoring and control in both industrial and household environment. In this paper, first, we discuss the necessity of CO detection, the proposal of a basic CPS framework for modeling and system development, how the CPS-CO model can be beneficiary to the environment, and a general classification of the various CO detection mechanisms. Next, a broad overview emphasizes the sensitivity, selectivity, response and recovery time, low concentration detection ability, effects of external parameters and other specifications that characterize the performance of the sensing methods proposed so far. We will discuss recent studies reported on the use of metal oxide semiconductor (MOS) sensing technologies for the detection of CO. MOS based micro-sensors play an important role in the measurement and monitoring of various trace amounts of CO gas. These sensors are used to sense CO through changes in their electrical properties. In addition to MOS based sensors, optical sensing methods have recently become popular, due to their increased performance. Hence, a brief overview of newly proposed optical based CO detection methods is provided as well.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.