In this paper, a methodology to capture the model-based haptic feedback control reference for closed-loop steering systems is demonstrated. The parameterisation is based on the measurements of open-loop driving manoeuvres for the inertia-spring-damperfriction reference model. The steady-state and transient manoeuvres are used to identify the model parameters. The reference model is limited to the haptic feedback of driver excitation in the linear vehicle handling range and intended to be used in closed-loop steering control strategies. The model parameters have an intuitive interpretation that allows to be used in both admittance and impedance control setting. The feasibility of the proposed model is demonstrated in a validated simulation environment for electric power assisted steering and on a real hardware for the steer-by-wire force-feedback case.
We present a novel approach to the construction of electronic prototypes which can support a variety of interactive devices. Our technique, which we call circuit stickers, involves adhering physical interface elements such as LEDs, sounders, buttons and sensors onto a cheap and easy-tomake substrate which provides electrical connectivity. This assembly may include control electronics and a battery for standalone operation, or it can be interfaced to a microcontroller or PC. In this paper we illustrate different points in the design space and demonstrate the technical feasibility of our approach. We have found circuit stickers to be versatile and low-cost, supporting quick and easy construction of physically flexible interactive prototypes. Building extra copies of a device is straightforward. We believe this technology has potential for design exploration, research prototyping, education and for hobbyist projects.
This paper illustrates a comparison of different haptic feedback control strategies; primarily focusing on open and closed-loop methods for a Force-Feedback Steer-by-Wire system. Due to shortcomings caused by the feedback motor impedance in the open loop architecture, the tracking performance is deteriorated. Consequently it is shown that the closedloop solutions provide an improved response within the desired steering excitation range.The closed-loop possibilities, torque and position control, are designed and objectively compared in terms of performance and stability. The controller objectives are inertia compensation and reference tracking. For a given reference, the stability constraint between the controller gains responsible for the two objectives is contrasting in both the methods. Higher bandwidth is achieved for torque controller, whereas the driver arm inertia limits the position control performance. The linear system analysis is supported by the experimental results. *The research activities have been performed as a part of the ITEAM project in the European Union's Horizon 2020 research and innovation program under Marie Sklodowska-Curie Grant Agreement No. 675999.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.