In this study, a novel solid phase microextration (SPME) Arrow was prepared for the sampling of volatile low molecular weight alkylamines (trimethylamine (TMA) and triethylamine (TEA)) in wastewater, salmon and mushroom samples before gas chromatographic separation with mass spectrometer as detector. Acidified zeolitic imidazolate framework-8 (A-ZIF-8) was utilized as adsorbent and poly(vinyl chloride) (PVC) as the adhesive. The custom SPME Arrow was fabricated via a physical adhesion: (1) ZIF-8 particles were suspended in a mixture of tetrahydrofuran (THF) and PVC to form a homogeneous suspension, (2) a non-coated stainless steel SPME Arrow was dipped in the ZIF-8/PVC suspension for several times to obtain a uniform and thick coating, (3) the pore size of ZIF-8 was modified by headspace exposure to hydrochloric acid in order to increase the extraction efficiency for amines. The effect of ZIF-8 concentration in PVC solution, dipping cycles and aging temperature on extraction efficiency was investigated. In addition, sampling parameters such as NaCl concentration, sample volume, extraction time, potassium hydroxide concentration, desorption temperature and desorption time were optimized. The Arrow-to-Arrow reproducibilities (RSDs) for five ZIF-8 coated Arrows were 15.6% and 13.3% for TMA and TEA, respectively. The extraction with A-ZIF-8/PVC Arrow was highly reproducible for at least 130 cycles without noticeable decrease of performance (RSD<12.5%). Headspace SPME of 7.5mL sample solution with the fabricated ZIF-8 coated Arrow achieved linear ranges of 1-200ngmL for both TMA and TEA. The limit of quantitation (LOQ) was 1ngmL for both TMA and TEA. The method was successfully applied to the determination of TMA and TEA in wastewater, salmon and mushroom samples giving satisfactory selectivity towards the studied amines.
New chemical vapor reaction (CVR) and atomic layer deposition (ALD)-conversion methods were utilized for preparation of metal organic frameworks (MOFs) coatings of solid phase microextraction (SPME) Arrow for the first time. With simple, easy and convenient one-step reaction or conversion, four MOF coatings were made by suspend ALD iron oxide (FeO) film or aluminum oxide (AlO) film above terephthalic acid (HBDC) or trimesic acid (HBTC) vapor. UIO-66 coating was made by zirconium (Zr)-BDC film in acetic acid vapor. As the first documented instance of all-gas phase synthesis of SPME Arrow coatings, preparation parameters including CVR/conversion time and temperature, acetic acid volume, and metal oxide film/metal-ligand films thickness were investigated. The optimal coatings exhibited crystalline structures, excellent uniformity, satisfactory thickness (2-7.5 μm), and high robustness (>80 times usage). To study the practical usefulness of the coatings for the extraction, several analytes with different chemical properties were tested. The Fe-BDC coating was found to be the most selective and sensitive for the determination of benzene ring contained compounds due to its highly hydrophobic surface and unsaturated metal site. UIO-66 coating was best for small polar, aromatic, and long chain polar compounds owing to its high porosity. The usefulness of new coatings were evaluated for gas chromatography-mass spectrometer (GC-MS) determination of several analytes, present in wastewater samples at three levels of concentration, and satisfactory results were achieved.
Abstract. Biogenic volatile organic compounds (BVOCs) emitted by terrestrial vegetation participate in a diversity of natural processes. These compounds impact both shortrange processes, such as on plant protection and communication, and long-range processes, for example by participating in aerosol particle formation and growth. The biodiversity of plant species around the Earth, the vast assortment of emitted BVOCs, and their trace atmospheric concentrations contribute to the substantial remaining uncertainties about the effects of these compounds on atmospheric chemistry and physics, and call for the development of novel collection devices that can offer portability with improved selectivity and capacity. In this study, a novel solid-phase microextraction (SPME) Arrow sampling system was used for the static and dynamic collection of BVOCs from a boreal forest, and samples were subsequently analyzed on site by gas chromatography-mass spectrometry (GC-MS). This system offers higher sampling capacity and improved robustness when compared to traditional equilibrium-based SPME techniques, such as SPME fibers. Field measurements were performed in summer 2017 at the Station for Measuring Ecosystem-Atmosphere Relations (SMEAR II) in Hyytiälä, Finland. Complementary laboratory tests were also performed to compare the SPME-based techniques under controlled experimental conditions and to evaluate the effect of temperature and relative humidity on their extraction performance. The most abundant monoterpenes and aldehydes were successfully collected. A significant improvement on sampling capacity was observed with the new SPME Arrow system over SPME fibers, with collected amounts being approximately 2× higher for monoterpenes and 7-8× higher for aldehydes. BVOC species exhibited different affinities for the type of sorbent materials used (polydimethylsiloxane (PDMS)-carbon wide range (WR) vs. PDMS-divinylbenzene (DVB)). Higher extraction efficiencies were obtained with dynamic collection prior to equilibrium regime, but this benefit during the field measurements was small, probably due to the natural agitation provided by the wind. An increase in temperature and relative humidity caused a decrease in the amounts of analytes extracted under controlled experimental conditions, even though the effect was more significant for PDMS-carbon WR than for PDMS-DVB. Overall, results demonstrated the benefits and challenges of using SPME Arrow for the sampling of BVOCs in the atmosphere.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.