In designing any machine element, we need to optimize the design to attain its maximum utilization. Herein deep groove ball bearings has been chosen for optimization. Optimization has been done in such a way that the design is robust so that manufacturing tolerances can be considered in the design. Robust design ensures that changes in design variables due to manufacturing tolerances have minimum effect on the objective function, i.e. its performance. Robustness is achieved by maximizing the mean value of the objective function and minimizing its deviation. For rolling element bearings, its life is one of the most crucial considerations. The rolling bearing rating life depends on dynamic capacity, lubrication conditions, contamination, mounting, lubrication, manufacturing accuracy, material quality, etc. and thus the dynamic capacity and elasto-hydrodynamic minimum film thickness has been taken as objective functions for the current problem. Rolling element bearings have standard boundary dimensions, which include the outer diameter, inner diameter and bearing width for the case of deep groove ball bearings. So the performance can be improved by changing internal dimensions, which are the bearing pitch diameter, ball diameter, the inner and outer raceway groove curvature coefficients and, the number of rolling elements. These five internal geometrical parameters are taken as design variables, moreover five design constraint factors are also included. Thirty-six constraint equations are considered, which are mainly based on geometrical and strength considerations. In the present work, the objective functions are optimized individually (i.e., the single-objective optimization) and then simultaneously (i.e., the multi-objective optimization). NSGA-II (non-dominated sorting genetic algorithm) has been used as the optimization tool. Pareto optimal fronts are obtained for one of the bearings. Out of many points on the Pareto-front, only the knee solutions have been presented in the tables. This work shows that geometrically feasible bearings can be designed by optimizing multiple objective functions simultaneously and also incorporating the variations in dimensions, which occur due to manufacturing tolerance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.