The search for the optimal ordering of a set of variables in order to solve a computational problem is a difficulty that can appear in several circumstances. One of these situations is the automatic learning of a network structure, for example, a Bayesian Network structure (BN) starting from a dataset. Searching in the space of structures is often unmanageable, especially if the number of variables is high. Popular heuristic approaches, like Cooper and Herskovits's K2 algorithm, depend on a given ordering of variables. Estimation of Distribution Algorithms (EDAs) are a new paradigm for Evolutionary Computation that have been used as a search engine in the BN structure learning problem. In this paper, we will use two different EDAs to obtain not the best structure, but the optimal ordering of variables for the K2 algorithm: UMDA and MIMIC, both of them in discrete and continuous domains. We will also check whether the individual representation and its relation to the corresponding ordering play important roles, and whether MIMIC outperforms the results of UMDA.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.