In this paper, a novel approach to modelling intracavity second harmonic generation (SHG) in periodically poled MgO-doped lithium niobate (PPLN) is presented and verified against experimental results. This approach involves combining the coupled nonlinear wave equations with a rate equation model for a diode-pumped solid-state Nd:YVO4 laser, taking into account both the depletion of the fundamental wave due to the energy conversion from the fundamental wave to the SHG wave and the reduction of the fundamental wave within a laser cavity due to the loss as a result of the SHG nonlinear process. It was shown that the theoretical simulation matched the experimental results well, while also providing physical insight into the importance of the fundamental wave depletion in the intracavity SHG nonlinear processes. The resulting model is computationally simple and has the potential to generalize to the other nonlinear processes such as three-wave mixing and optical parametric oscillation.
A method of speckle reduction suitable for use in a laser projector was proposed in the paper. Speckle contrast ratio (SCR) reduction was achieved by combining wavelength diversity and angular diversity methods. First, wavelength diversity was demonstrated by the use of two green laser sources (a 520 nm laser diode (LD) and a 532 nm diode-pumped solid-state (DPSS) laser) at a power ratio of 4:1. Second, angular diversity was achieved via the vibration of two lenses in two orthogonal directions placed directly after the laser source. The vibrating lenses are small and do not require changes to the beam path of the laser source, allowing for more compact projector designs. The frequency of vibration of these lenses was optimized to minimize the SCR in the output image. A SCR of less than 4% was achieved without the use of optical diffusers, which significantly reduces optical losses. Optical transmission could be further increased with the optimization of optical coatings on the lenses. This result shows great promise for applications such as laser pico-projectors within the realm of heads-up displays (HUDs) and mobile devices.
In this paper, a systematic study of the relationship between nonlinear crystal length and intracavity second-harmonic generation (SHG) using MgO-doped periodically-poled lithium niobate (MgO:PPLN) is presented. The experimental results demonstrate a relationship between the maximum SHG power generated and the full-width at half maximum (FWHM) of the crystal’s temperature tuning curve to the length of the nonlinear optical crystal. It was shown that maximum SHG power increases rapidly with the increase of MgO:PPLN length, reaching a saturation length (~ 2 mm), which is much shorter than that predicted by the single-pass SHG theory. This saturation length of the MgO:PPLN crystal is almost independent on 808 nm pump power for typical powers used in continuous wave intracavity SHG lasers. In addition to this saturation effect, a broadening effect was also observed, the FWHM of the temperature tuning curve was shown to have a larger FWHM than that predicted by the single-pass SHG theory for MgO:PPLN shorter than the saturation length. This work has the benefit of allowing engineers to optimize nonlinear crystal length when developing intracavity SHG based diode-pumped solid state (DPSS) lasers.
In this paper, a systematic study of the relationship between nonlinear crystal length and intracavity second-harmonic generation (SHG) using MgO-doped periodically-poled lithium niobate (MgO:PPLN) is presented. The experimental results demonstrate a relationship between the maximum SHG power generated and the full-width at half maximum (FWHM) of the crystal’s temperature tuning curve to the length of the nonlinear optical crystal. It was shown that maximum SHG power increases rapidly with the increase of MgO:PPLN length, reaching a saturation length (~2 mm), which is much shorter than that predicted by the single-pass SHG theory. This saturation length of the MgO:PPLN crystal is almost independent on 808 nm pump power for typical powers used in continuous wave intracavity SHG lasers. In addition to this saturation effect, a broadening effect was also observed, the FWHM of the temperature tuning curve was shown to have a larger FWHM than that predicted by the single-pass SHG theory for MgO:PPLN shorter than the saturation length. This work has the benefit of allowing engineers to optimize nonlinear crystal length when developing intracavity SHG based diode-pumped solid state (DPSS) lasers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.