Background: The lumbopelvic-hip complex, also referred to as the “core”, is composed of every muscle between the knees and sternum. The back squat (BS) and front squat (FS) are both staple exercises that challenge the core in different ways. Possessing a properly balanced squat ratio (SR = 1-RM FS/1-RM BS; 1-RM = one-repetition maximum) could lead to a more stable core. Objective: This study attempted to determine if there was a meaningful relationship between the SR and core strength (CS) in resistance-trained males. If a strong relation exists between the SR and CS, strength and conditioning professionals would have a readily available assessment tool for examining CS by simply viewing the SR. Method: Twenty-one resistance-trained males (age = 28.3 ± 6.2 years; body mass = 93.1 ± 13.1 kg; height = 181.9 ± 7.6 cm; weight training experience with FS & BS = 6.4 ± 3.7 years) performed CS tests (flexor endurance, extensor endurance, prone bridge, left side-bridge, and right side-bridge), along with a 1-RM in the BS and FS. An aggregate of the CS test times (CSA) was also calculated for comparison with the SR. A Pearson product-moment correlation coefficient (r) was used to compare the SR with the CS tests and the CSA. Results: The CS test results were as follows (secs): flexor endurance 228.2±93.0, extensor endurance 137.0±28.2, prone bridge 166.7±51.3, left side-bridge 97.36±31.0, right side-bridge 100.2±28.3, and CSA 729.8±165.4. The 1-RM BS, 1-RM FS, and SR were: 157.5±29.7 kgs, 132.2±24.3 kgs, and 0.84±0.06 respectively. A moderate correlation was found between total CSA and the SR (r = 0.50, CD2 = 0.25, p<0.05). In addition, a moderate correlation was found between the prone bridge test and the SR (r = 0.49, CD2 = 0.24, p<0.05). A very strong positive correlation was also found between 1-RM BS and 1-RM FS (r = 0.93, CD2 = 0.86, p<0.05). Conclusions: The results of this study suggest that the CSA and prone bridge test are moderately related to the SR. However, the low coefficient of determination between the SR and CS times suggests that the SR is not a suitable estimate of CS. The very strong relationship between the 1-RM FS and 1-RM BS provides strong evidence for the interchangeable use of these modalities within a resistance training protocol.
Background Recent evidence has demonstrated that athletes are at greater risk for a lower extremity injury following a return-to-sport (RTS) after sport-related concussion (SRC). The reason for this is not completely clear, but it has been hypothesized that persistent deficits in neurocognitive factors may be a contributing factor. Hypothesis/Purpose This study assessed simple reaction time, processing speed, attention, and concentration in a group of athletes, post-concussion upon clearance for RTS for potential deficits that may result in slower reaction time, processing speed, attention, and concentration. The researchers hypothesized that the concussion group would demonstrate worse scores on both assessments compared to a sex-, age-, and sport-matched cohort. Study Design Case-controlled study Methods Twelve participants who had suffered a SRC and eight healthy individuals who were matched to the concussed group by age, sex, and sport were evaluated. Those with a concussion had been cleared for RTS by a licensed healthcare provider. Each participant underwent neurocognitive tests that included a simple reaction time test (SRT) and the King-Devick Test (K-D). Independent t-tests were performed to compare the groups with significance set a priori at p<0.05. Results There was a significant difference (p =0.024) between groups for SRT with the concussed group demonstrating a better SRT than the control group. There were no significant differences (p =0.939) between the groups for the K-D. Conclusion With no significant differences between groups in the K-D assessment and, surprisingly, the concussed group having a better SRT compared to the healthy group, our hypothesis was not supported. Clinical Relevance These specific measures, compounded with extensive post-concussion time lapse until RTS clearance, may have limited capacity in revealing potential persistent deficits in relevant neurocognitive characteristics. Level of Evidence Level of Evidence 3
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.