Dissipated heat was consistent with power extinguished by absorbing nanoparticles dispersed into thin polymer films at subwavelength intervals. Measurements mirrored a priori simulation of optical and thermal responses. Components of heating and absorption were identified.
A lthough domestic violence (DV) has been a problem throughout history, it is only in the past two decades that researchers have shown interest in analyzing how cultural values and social norms relate to aggression and violence towards women. 1 DV, as noted by Hawcroft et al 2 "includes violence perpetrated by a family member or intimate partner towards another adult. Much of the current international evidence focuses on intimate partner violence (IPV), which is a subset of domestic violence" (p. 2). The Center for Disease Control's Intimate Partner Surveillance publication defines IPV as including "physical violence, sexual violence, stalking and psychological aggression (including coercive tactics) by a current or former intimate partner" (p. 11). 3 Current statistics
The citizen Continental-America Telescopic Eclipse (CATE) Experiment was a new type of citizen science experiment designed to capture a time sequence of white-light coronal observations during totality from 17:16 to 18:48 UT on 2017 August 21. Using identical instruments the CATE group imaged the inner corona from 1 to 2.1 RSun with 1.″43 pixels at a cadence of 2.1 s. A slow coronal mass ejection (CME) started on the SW limb of the Sun before the total eclipse began. An analysis of CATE data from 17:22 to 17:39 UT maps the spatial distribution of coronal flow velocities from about 1.2 to 2.1 RSun, and shows the CME material accelerates from about 0 to 200 km s−1 across this part of the corona. This CME is observed by LASCO C2 at 3.1–13 RSun with a constant speed of 254 km s−1. The CATE and LASCO observations are not fit by either constant acceleration nor spatially uniform velocity change, and so the CME acceleration mechanism must produce variable acceleration in this region of the corona.
Plasmonic nanocomposite materials have exhibited value for applications ranging from biological hyperthermia to optical sensing and waveguiding. Energy absorbed from incident irradiation can be re-emitted as light or decay into phonons that propagate through the surrounding material and increase its temperature. Previous works have examined steady-state thermal dissipation resulting from irradiated plasmonic nanocomposites. This work shows heat dissipation in the first few seconds can significantly exceed that during subsequent steady state, depending on film geometry, nanoparticle diameter and concentration, laser irradiation power, and position within and adjacent to the irradiated spot. Films of lower thickness containing 16 nm gold nanoparticles (AuNPs) irradiated at 13.5 mW laser power showed highest enhancement and tunability of the dynamic thermal mode within and adjacent to the irradiated spot. Measured initial nanocomposite film temperature in or near the irradiated spot exceeded that resulting from constant bulk film thermal dissipation. These results improve understanding of cooling dynamics of resonantly irradiated nanocomposite materials and guide development of devices with enhanced thermal dissipation dynamics.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.