Genome-wide association studies have identified breast cancer risk variants in over 150 genomic regions, but the mechanisms underlying risk remain largely unknown. These regions were explored by combining association analysis with in silico genomic feature annotations. We defined 205 independent risk-associated signals with the set of credible causal variants (CCVs) in each one. In parallel, we used a Bayesian approach (PAINTOR) that combines genetic association, linkage disequilibrium, and enriched genomic features to determine variants with high posterior probabilities (HPPs) of being causal.Potentially causal variants were significantly over-represented in active gene regulatory regions and transcription factor binding sites. We applied our INQUSIT pipeline for prioritizing genes as targets of potentially causal variants, using gene expression (eQTL), chromatin interaction and functional annotations. Known cancer drivers, transcription factors and genes in the developmental, apoptosis, immune system and DNA integrity checkpoint gene ontology pathways, were over-represented among the 178 highest confidence target genes.
The timing of puberty is a highly polygenic childhood trait that is epidemiologically associated with various adult diseases. Here, we analyse 1000-Genome reference panel imputed genotype data on up to ~370,000 women and identify 389 independent signals (all P<5×10 -8 ) for age at menarche, a notable milestone in female pubertal development. In Icelandic data from deCODE, these signals explain ~7.4% of the population variance in age at menarche, corresponding to one quarter of the estimated heritability. We implicate over 250 genes via coding variation or associated gene expression, and demonstrate enrichment across genes active in neural tissues. We identify multiple rare variants near the imprinted genes MKRN3 and DLK1 that exhibit large effects on menarche only when paternally inherited. Disproportionate effects of variants on early or late puberty timing are observed: single variant and heritability estimates are larger for early than late puberty timing in females. The opposite pattern is seen in males, with larger estimates for late than early puberty timing. Mendelian randomization analyses indicate causal inverse associations, independent of BMI, between puberty timing and risks for breast and endometrial cancers in women, and prostate cancer in men. In aggregate, our findings reveal new complexity in the genetic regulation of puberty timing and support new causal links with adult cancer risks.
BackgroundCopy number variants (CNVs) are pervasive in the human genome but potential disease associations with rare CNVs have not been comprehensively assessed in large datasets. We analysed rare CNVs in genes and non-coding regions for 86,788 breast cancer cases and 76,122 controls of European ancestry with genome-wide array data.ResultsGene burden tests detected the strongest association for deletions in BRCA1 (P= 3.7E-18). Nine other genes were associated with a p-value < 0.01 including known susceptibility genes CHEK2 (P= 0.0008), ATM (P= 0.002) and BRCA2 (P= 0.008). Outside the known genes we detected associations with p-values < 0.001 for either overall or subtype-specific breast cancer at nine deletion regions and four duplication regions. Three of the deletion regions were in established common susceptibility loci.ConclusionsThis is the first genome-wide analysis of rare CNVs in a large breast cancer case-control dataset. We detected associations with exonic deletions in established breast cancer susceptibility genes. We also detected suggestive associations with non-coding CNVs in known and novel loci with large effects sizes. Larger sample sizes will be required to reach robust levels of statistical significance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.