Three pairs of isomeric, iron-sulfur core dendrimers were prepared. Each isomer pair was distinguished by a 3,5-aromatic substitution pattern (extended) versus 2,6-aromatic substitution pattern (backfolded). Several observations were made that supported the hypothesis that the iron-sulfur cluster cores were encapsulated more effectively in the backfolded isomers as compared to their extended isomeric counterparts. The backfolded isomers were more difficult to reduce electrochemically, consistent with encapsulation in a more hydrophobic microenvironment. Furthermore, heterogeneous electron-transfer rates for the backfolded molecules were attenuated compared to the extended molecules. From diffusion measurements obtained by pulsed field gradient spin-echo NMR and chronoamperometry, the backfolded dendrimers were found to be smaller than the extended dendrimers. Comparison of longitudinal proton relaxation (T(1)) values also indicated a smaller, more compact dendrimer conformation for the backfolded architectures. These findings indicated that the dendrimer size was not the major factor in determining electron-transfer rate attenuation. Instead, the effective electron-transfer distance, as determined by the relative core position and mobility in a dendrimer, is most relevant for encapsulation.
Polarization modulation infrared reflectance absorption spectroscopy (PM-IRRAS) and infrared reflectance absorption spectroscopy (IRRAS) have been used to characterize the formation of a self-assembled monolayer of N-(3-dihydroxyborylphenyl)-11-mercaptoundecanamide) (abbreviated PBA) on a gold surface and the subsequent binding of various sugars to the PBA adlayer through the phenylboronic acid moiety to form a phenylboronate ester. Vibrationally resonant sum frequency generation (VR-SFG) spectroscopy confirmed the ordering of the substituted phenyl groups of the PBA adlayer on the gold surface. Solution FTIR spectra and density functional theory were used to confirm the identity of the observed vibrational modes on the gold surface of PBA with and without bound sugar. The detection of the binding of glucose on the gold surface was confirmed in part by the presence of a C-O stretching mode of glucose and the observed O-H stretching mode of glucose that is shifted in position relative to the O-H stretching mode of boronic acid. An IR marker mode was also observed at 1734 cm(-1) upon the binding of glucose. Additionally, changes in the peak profile of the B-O stretching band were observed upon binding, confirming formation of a phenylboronate ester on the gold surface. The binding of mannose and lactose were also detected primarily through the IR marker mode at approximately 1736 to 1742 cm(-1) depending on the identity of the bound sugar.
The thermodynamic redox potentials of films of constitutional isomers of iron-sulfur cluster core dendrimers were measured and compared. It was determined that the primary structure of the dendrimer influences its reduction potential. Dendrimers containing so-called backfolded linkages were more difficult to reduce than their extended analogues. This behavior is rationalized by suggesting that the backfolded isomers pack more tightly around the iron-sulfur cluster, creating a more hydrophobic local microenvironment. Also, all of these molecules are easier to reduce in the film than in dimethyl formamide solution. The variation in redox potential between film and solution environment was compared to that of dendrimers of differing generations and correlated with the amount of hydrophobic dendron surrounding the cluster.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.