Pancreas disease (PD) of Atlantic salmon is an emerging disease caused by Salmonid alphavirus (SAV) which mainly affects salmonid aquaculture in Western Europe. Although genome structure of SAV has been characterized and each individual viral protein has been identified, the role of 6K protein in viral replication and infectivity remains undefined. The 6K protein of alphaviruses is a small and hydrophobic protein which is involved in membrane permeabilization, protein processing and virus budding. Because these common features are shared across many viral species, they have been named viroporins. In the present study, we applied reverse genetics to generate SAV3 6K-deleted (Δ6K) variant and investigate the role of 6K protein. Our findings show that the 6K-deletion variant of salmonid alphavirus is non-viable. Despite viral proteins of Δ6K variant are detected in the cytoplasm by immunostaining, they are not found on the cell surface. Further, analysis of viral proteins produced in Δ6K cDNA clone transfected cells using radioimmunoprecipitation (RIPA) and western blot showed a protein band of larger size than E2 of wild-type SAV3. When Δ6K cDNA was co-transfected with SAV3 helper cDNA encoding the whole structural genes including 6K, the infectivity was rescued. The development of CPE after co-transfection and resolved genome sequence of rescued virus confirmed full-length viral genome being generated through RNA recombination. The discovery of the important role of the 6K protein in virus production provides a new possibility for the development of antiviral intervention which is highly needed to control SAV infection in salmonids.
PGE2 plays an important role in a broad spectrum of physiological and pathological processes mediated through a membrane-bound G protein-coupled receptor (GPCR) called EP receptor. In mammals, four subtypes of EP receptor (EP 1-4) are identified and each of them functions through different signal transduction pathways. Orthologous EP receptors have also been identified in other non-mammalian species, such as chicken and zebrafish. EP4 is the only identified PGE2 receptor to date in Atlantic salmon but its tissue distribution and function have not been studied in any detail. In this study, we first sequenced EP4 receptor in different tissues and found that the presence of the 3nt deletion in the 5’ untranslated region was accompanied by silent mutation at nt 668. While attempting to amplify the same sequence in TO cells (an Atlantic salmon macrophage-like cell line), we failed to obtain the full-length product. Further investigation revealed different isoform of EP4 receptor in TO cells and we subsequently documented its presence in different Atlantic salmon tissues. These two isoforms of EP4 receptor share high homology in their first half of sequence but differ in the second half part with several deletion segments though the final length of coding sequence is the same for two isoforms. We further studied the immunomodulation effect of PGE2 in TO cells and found that PGE2 inhibited the induction of CXCL-10, CCL-4, IL-8 and IL-1β genes expression in a time dependent manner and without cAMP upregulation.
Prostaglandin E2 (PGE2) is an important lipid mediator that plays diverse functions in mammals. Four receptor subtypes of PGE2, designated EP1-4, have been identified to mediate its signaling pathways. Extensive studies of PGE2 and its receptors have been carried out in mammals, but little is known in fish, including Atlantic salmon. In the current study, the distribution of Atlantic salmon EP4 receptor in different tissues was investigated using RT- and real-time PCR. A custom made antibody was used to investigate the distribution of this receptor in different tissues. Quantitative analysis by real-time PCR revealed that the expression was more abundant in the spleen followed by head kidney, skin and fin while it was least expressed in heart, muscles and brain. The staining intensity obtained by immunohistochemistry correlated with the RT-PCR results. EP4 expression was strongly associated with the immune cells in different tissues. To our knowledge, this is the first study to describe the distribution of EP4 receptor in Atlantic salmon tissues. Our findings suggest that EP4 may play a role in mediating immune responses as observed in mammals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.