The expression of the chemokine, eotaxin-1, and its receptors in normal and osteoarthritic human chondrocytes was examined, and its role in cartilage degradation was elucidated in this study. Results indicated that plasma concentrations of eotaxin-1 as well as the chemokines, RANTES, and MCP-1alpha, were higher in patients with osteoarthritis (OA) than those in normal humans. Stimulation of chondrocytes with IL-1beta or TNF-alpha significantly induced eotaxin-1 expression. The production of eotaxin-1 induced expression of its own receptor of CCR3 and CCR5 on the cell surface of chondrosarcomas, suggesting that an autocrine/paracrine pathway is involved in eotaxin-1's action. In addition, eotaxin-1 markedly increased the expressions of MMP-3 and MMP-13 mRNA, but had no effect on TIMP-1 expression in chondrocytes. However, pretreatment of anti-eotaxin-1 antibody significantly decreased the MMP-3 expression induced by IL-1beta. These results first demonstrate that human chondrocytes express the chemokine, eotaxin-1, and that its expression is induced by treatment with IL-1beta and TNF-alpha. The cytokine-triggered induction of eotaxin-1 further results in enhanced expressions of its own receptor of CCR3, CCR5, and MMPs, suggesting that eotaxin-1 plays an important role in cartilage degradation in OA.
The purpose of the present study was to elucidate the possible signal transduction pathway involved in the underlying mechanism of glucosamine (GLN)'s influence on the gene expression of matrix metalloproteinases (MMPs) in chondrocytes stimulated with IL-1beta. Using chondrosarcoma cells stimulated with IL-1beta, the effects of GLN on the mRNA and protein levels of MMP-3, the activation of JNK, ERK, p38, NF-kappaB, and AP-1, the nuclear translocation of NF-kappaB/Rel family members, and PI3-kinase/Akt activation were studied. GLN inhibited the expression and the synthesis of MMP-3 induced by IL-1beta, and that inhibition was mediated at the level of transcription involving both the NF-kappaB and AP-1 transcription factors. Translocation of NF-kappaB was reduced by GLN as a result of the inhibition of IkappaB degradation. A slightly synergistic effect on the activation of AP-1 induced by IL-1beta was shown in the presence of GLN. Among MAPK pathways involved in the transcriptional regulation of AP-1, phosphorylation of JNK and ERK was found to increase with the presence of GLN under IL-1beta treatment, while that for p38 decreased. It was also found that GLN alone, but also synergistically with IL-1beta, was able to activate the Akt pathway. The requirements of NF-kappaB translocation and p38 activity are indispensably involved in the induction of MMP-3 expression in chondrosarcoma cells stimulated by IL-1beta. Inhibition of the p38 pathway in the presence of GLN substantially explains the chondroprotective effect of GLN on chondrocytes that regulate COX-2 expression, PGE(2) synthesis, and NO expression and synthesis. The chondroprotective effect of GLN through the decrease in MMP-3 production and stimulation of proteoglycan synthesis may follow another potential signaling pathway of Akt.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.