This paper presents an algorithm for joint estimation of carrier-frequency offset and timing offset for orthogonal frequency-division multiplexing (OFDM) systems in the tracking mode. The proposed weighted least-squares algorithm derives its estimates based on phase differences in the received pilot subcarrier signals between two symbols. Moreover, the optimal weights in two different channel conditions are derived. Both analysis and simulation show that the weighted least-squares algorithm can effectively and accurately estimate the carrier-frequency offset as well as the timing offset of OFDM signals in multipath fading channels.
A model for a class of high-capacity associative memories is presented. Since they are based on two-layer recurrent neural networks and their operations depend on the correlation measure, these associative memories are called recurrent correlation associative memories (RCAMs). The RCAMs are shown to be asymptotically stable in both synchronous and asynchronous (sequential) update modes as long as their weighting functions are continuous and monotone nondecreasing. In particular, a high-capacity RCAM named the exponential correlation associative memory (ECAM) is proposed. The asymptotic storage capacity of the ECAM scales exponentially with the length of memory patterns, and it meets the ultimate upper bound for the capacity of associative memories. The asymptotic storage capacity of the ECAM with limited dynamic range in its exponentiation nodes is found to be proportional to that dynamic range. Design and fabrication of a 3-mm CMOS ECAM chip is reported. The prototype chip can store 32 24-bit memory patterns, and its speed is higher than one associative recall operation every 3 mus. An application of the ECAM chip to vector quantization is also described.
In this brief, we present a digit-reconfigurable finiteimpulse response (FIR) filter architecture with a very fine granularity. It provides a flexible yet compact and low-power solution to FIR filters with a wide range of precision and tap length. Based on the proposed architecture, an 8-digit reconfigurable FIR filter chip is implemented in a single-poly quadruple-metal 0.35-m CMOS technology. Measurement results show that the fabricated chip operates up to 86 MHz when the filter draws 16.5 mW of power from a 2.5-V power supply.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.