Myasthenia gravis (MG), an acquired autoimmune-related neuromuscular disorder that causes muscle weakness, presents with varying severity, including myasthenic crisis (MC). Although MC can cause significant morbidity and mortality, specialized neuro-intensive care can produce a good long-term prognosis. Considering the outcomes of MG during hospitalization, it is critical to conduct risk assessments to predict the need for intensive care. Evidence and valid tools for the screening of critical patients with MG are lacking. We used three machine learning-based decision tree algorithms, including a classification and regression tree, C4.5, and C5.0, for predicting intensive care unit (ICU) admission of patients with MG. We included 228 MG patients admitted between 2015 and 2018. Among them, 88.2% were anti-acetylcholine receptors antibody positive and 4.7% were anti-muscle-specific kinase antibody positive. Twenty clinical variables were used as predictive variables. The C5.0 decision tree outperformed the other two decision tree and logistic regression models. The decision rules constructed by the best C5.0 model showed that the Myasthenia Gravis Foundation of America clinical classification at admission, thymoma history, azathioprine treatment history, disease duration, sex, and onset age were significant risk factors for the development of decision rules for ICU admission prediction. The developed machine learning-based decision tree can be a supportive tool for alerting clinicians regarding patients with MG who require intensive care, thereby improving the quality of care.
In many countries, especially developed nations, the fertility rate and birth rate have continually declined. Taiwan’s fertility rate has paralleled this trend and reached its nadir in 2022. Therefore, the government uses many strategies to encourage more married couples to have children. However, couples marrying at an older age may have declining physical status, as well as hypertension and other metabolic syndrome symptoms, in addition to possibly being overweight, which have been the focus of the studies for their influences on male and female gamete quality. Many previous studies based on infertile people are not truly representative of the general population. This study proposed a framework using five machine learning (ML) predictive algorithms—random forest, stochastic gradient boosting, least absolute shrinkage and selection operator regression, ridge regression, and extreme gradient boosting—to identify the major risk factors affecting male sperm count based on a major health screening database in Taiwan. Unlike traditional multiple linear regression, ML algorithms do not need statistical assumptions and can capture non-linear relationships or complex interactions between dependent and independent variables to generate promising performance. We analyzed annual health screening data of 1375 males from 2010 to 2017, including data on health screening indicators, sourced from the MJ Group, a major health screening center in Taiwan. The symmetric mean absolute percentage error, relative absolute error, root relative squared error, and root mean squared error were used as performance evaluation metrics. Our results show that sleep time (ST), alpha-fetoprotein (AFP), body fat (BF), systolic blood pressure (SBP), and blood urea nitrogen (BUN) are the top five risk factors associated with sperm count. ST is a known risk factor influencing reproductive hormone balance, which can affect spermatogenesis and final sperm count. BF and SBP are risk factors associated with metabolic syndrome, another known risk factor of altered male reproductive hormone systems. However, AFP has not been the focus of previous studies on male fertility or semen quality. BUN, the index for kidney function, is also identified as a risk factor by our established ML model. Our results support previous findings that metabolic syndrome has negative impacts on sperm count and semen quality. Sleep duration also has an impact on sperm generation in the testes. AFP and BUN are two novel risk factors linked to sperm counts. These findings could help healthcare personnel and law makers create strategies for creating environments to increase the country’s fertility rate. This study should also be of value to follow-up research.
Mammography is considered the gold standard for breast cancer screening. Multiple risk factors that affect breast cancer development have been identified; however, there is an ongoing debate regarding the significance of these factors. Machine learning (ML) models and Shapley Additive Explanation (SHAP) methodology can rank risk factors and provide explanatory model results. This study used ML algorithms with SHAP to analyze the risk factors between two different age groups and evaluate the impact of each factor in predicting positive mammography. The ML model was built using data from the risk factor questionnaires of women participating in a breast cancer screening program from 2017 to 2021. Three ML models, least absolute shrinkage and selection operator (lasso) logistic regression, extreme gradient boosting (XGBoost), and random forest (RF), were applied. RF generated the best performance. The SHAP values were then applied to the RF model for further analysis. The model identified age at menarche, education level, parity, breast self-examination, and BMI as the top five significant risk factors affecting mammography outcomes. The differences between age groups ranked by reproductive lifespan and BMI were higher in the younger and older age groups, respectively. The use of SHAP frameworks allows us to understand the relationships between risk factors and generate individualized risk factor rankings. This study provides avenues for further research and individualized medicine.
This study aimed to investigate the important predictors related to predicting positive mammographic findings based on questionnaire-based demographic and obstetric/gynecological parameters using the proposed integrated machine learning (ML) scheme. The scheme combines the benefits of two well-known ML algorithms, namely, least absolute shrinkage and selection operator (Lasso) logistic regression and extreme gradient boosting (XGB), to provide adequate prediction for mammographic anomalies in high-risk individuals and the identification of significant risk factors. We collected questionnaire data on 18 breast-cancer-related risk factors from women who participated in a national mammographic screening program between January 2017 and December 2020 at a single tertiary referral hospital to correlate with their mammographic findings. The acquired data were retrospectively analyzed using the proposed integrated ML scheme. Based on the data from 21,107 valid questionnaires, the results showed that the Lasso logistic regression models with variable combinations generated by XGB could provide more effective prediction results. The top five significant predictors for positive mammography results were younger age, breast self-examination, older age at first childbirth, nulliparity, and history of mammography within 2 years, suggesting a need for timely mammographic screening for women with these risk factors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.