An acid protease from the broth of a 24 h cultivated Aspergillus niger BCRC 32720 was purified to electrophoretical homogeneity by CM Sepharose FF and Sephacryl S-100 HR chromatographs. The specific activity, purification fold, and yield were 23.29 kU/mg, 2.5, and 24.2%, respectively. Molecular mass (M) and N-terminal amino acid sequence were 47.5 kDa and SKGSAVTT, whereas the pH and temperature optima were at 2.5 and 50 °C, respectively. It was stable at pH 2.0-4.0 or ≤40 °C and activated by Fe(2+) and cysteine, but partially inhibited by phenylmethanesulfonyl fluoride and tosyllysine chloromethyl ketone and highly inhibited by Ag(+), Sn(2+), Fe(3+), Sb(3+), and pepstatin A. It was considered to be an aspartic protease.
Edited by Varda Rotter
Keywords:Retinoid-inducible gene 1 Retinoic acid receptor responder 3 Tazarotene-induced gene 3 p53 Class II tumor suppressor a b s t r a c t Recent studies indicated that the RIG1 (RARRES3/TIG3) plays an important role in cell proliferation, differentiation, and apoptosis. However, the regulatory mechanism of RIG1 gene expression has not been clearly elucidated. In this study, we identified a functional p53 response element (p53RE) in the RIG1 gene promoter. Transfection studies revealed that the RIG1 promoter activity was greatly enhanced by wild type but not mutated p53 protein. Sequence specific mutation of the p53RE abolished p53-mediated transactivation. Specific binding of p53 protein to the rig-p53RE was demonstrated using electrophoretic mobility shift assay (EMSA) and chromatin immunoprecipitation (ChIP) assay. Further studies confirmed that the expression of RIG1 mRNA and protein is enhanced through increased p53 protein in HepG2 or in H24-H1299 cells. In conclusion, our results indicated that RIG1 gene is a downstream target of p53 in cancer cell lines.
Caffeic acid phenyl ester (CAPE) has been identified as an active component of propolis, a substance that confers diverse activities in cells of various origins. However, the molecular basis of CAPE-mediated cellular activity remains to be clarified. Here, we show that CAPE preferentially induced S-and G 2 /M-phase cell-cycle arrests and initiated apoptosis in human cervical cancer lines. The effect was found to be associated with increased expression of E2F-1, as there is no CAPE-mediated induction of E2F-1 in the pre-cancerous cervical Z172 cells. CAPE also up-regulated the E2F-1 target genes cyclin A, cyclin E and apoptotic protease activating of factor 1 (Apaf-1) but down-regulated cyclin B and induced myeloid leukemia cell differentiation protein (Mcl-1). These results suggest the involvement of E2F-1 in CAPE-mediated growth inhibition and cell-cycle arrest. Transient transfection studies with luciferase reporters revealed that CAPE altered the transcriptional activity of the apaf-1 and mcl-1 promoters. Further studies using chromatin immunoprecipitation assays demonstrated that E2F-1 binding to the apaf-1 and cyclin B promoters was increased and decreased, respectively, in CAPE-treated cells. Furthermore, E2F-1 silencing abolished CAPE-mediated effects on cell-cycle arrest, apoptosis and related gene expression. Taken together, these results indicate a crucial role for E2F-1 in CAPE-mediated cellular activities in cervical cancer cells.
We recently reported that retinoic acid receptor responder 3 (RARRES3)-mediated protein deacylation resulted in significant inhibition of the transformed properties of breast cancer cells. This finding suggests a key role of RARRES3 in the regulation of growth signaling and metastasis in cancer cells and as a potential therapeutic target for cancer therapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.