Pressures in the intracranial, intraocular, and intravascular spaces are important parameters in assessing patients with a range of conditions, of particular relevance to those recovering from injuries or from surgical procedures. Compared with conventional devices, sensors that disappear by natural processes of bioresorption offer advantages in this context, by eliminating the costs and risks associated with retrieval. A class of bioresorbable pressure sensor that is capable of operational lifetimes as long as several weeks and physical lifetimes as short as several months, as combined metrics that represent improvements over recently reported alternatives, is presented. Key advances include the use of 1) membranes of monocrystalline silicon and blends of natural wax materials to encapsulate the devices across their top surfaces and perimeter edge regions, respectively, 2) mechanical architectures to yield stable operation as the encapsulation materials dissolve and disappear, and 3) additional sensors to detect the onset of penetration of biofluids into the active sensing areas. Studies that involve monitoring of intracranial pressures in rat models over periods of up to 3 weeks demonstrate levels of performance that match those of nonresorbable clinical standards. Many of the concepts reported here have broad applicability to other classes of bioresorbable technologies.
Transient forms of electronics, systems that disintegrate, dissolve, resorb, or sublime in a controlled manner after a well‐defined operating lifetime, are of interest for applications in hardware secure technologies, temporary biomedical implants, “green” consumer devices and other areas that cannot be addressed with conventional approaches. Broad sets of materials now exist for a range of transient electronic components, including transistors, diodes, antennas, sensors, and even batteries. This work reports the first examples of transient light‐emitting diodes (LEDs) that can completely dissolve in aqueous solutions to biologically and environmentally benign end products. Thin films of highly textured ZnO and polycrystalline Mo serve as semiconductors for light generation and conductors for transparent electrodes, respectively. The emitted light spans a range of visible wavelengths, where nanomembranes of monocrystalline silicon can serve as transient filters to yield red, green, and blue LEDs. Detailed characterization of the material chemistries and morphologies of the constituent layers, assessments of their performance properties, and studies of their dissolution processes define the underlying aspects. These results establish an electroluminescent light source technology for unique classes of optoelectronic systems that vanish into benign forms when exposed to aqueous conditions in the environment or in living organisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.