This study successfully demonstrates the application of inorganic p-type nickel oxide (NiOx ) as electrode interlayer for the fabrication of NiOx /CH3 NH3 PbI3 perovskite/PCBM PHJ hybrid solar cells with a respectable solar-to-electrical PCE of 7.8%. The better energy level alignment and improved wetting of the NiOx electrode interlayer significantly enhance the overall photovoltaic performance.
The application of the biomaterial dielectrics made of thermally crosslinking natural proteins without any additives in fabricating organic electronics is highlighted. The gate dielectrics of organic field‐effect transistors (OFETs) are prepared by the thermal treatment of the chicken albumen film taken directly from a fresh egg. Flexible OFETs and the complementary inverters fabricated with albumen dielectrics are demonstrated.
The origins of hysteresis in organic fi eld-effect transistors (OFETs) and its applications in organic memory devices is investigated. It is found that the orientations of the hydroxyl groups in poly(vinyl alcohol) (PVA) gate dielectrics are correlated with the hysteresis of transfer characteristics in pentacene-based OFETs under the forward and backward scan. The applied gate bias partially aligns the orientations of the hydroxyl groups perpendicular to the substrate as characterized by refl ective absorption Fourier transform infrared spectroscopy (RA-FTIR), in which the fi eld-induced surface dipoles at the pentacene/PVA interface trap charges and cause the hysteresis. Treating PVA with an anhydrous solvent eliminates the residual moisture in the dielectrics layer, allowing for more effective control of the induced dipoles by the applied gate bias. OFETs of dehydrated-PVA dielectrics present a pronounced shift of the threshold voltage (Δ V Th ) of 35.7 V in transfer characteristics, higher than that of 18.5 V for untreated devices and results in suffi cient dynamic response for applications in memory elements. This work highlights the usage of non-ferroelectric gate dielectrics to fabricate OFET memory elements by manipulating the molecular orientations in the dielectrics layer.
Various infra-red and planar chiral metamaterials were fabricated using the modified Nanospherical-Lens Lithography. By replacing the light source with a hand-held ultraviolet lamp, its asymmetric light emission pattern produces the elliptical-shaped photoresist holes after passing through the spheres. The long axis of the ellipse is parallel to the lamp direction. The fabricated ellipse arrays exhibit localized surface plasmon resonance in mid-infra-red and are ideal platforms for surface enhanced infra-red absorption (SEIRA). We also demonstrate a way to design and fabricate complicated patterns by tuning parameters in each exposure step. This method is both high-throughput and low-cost, which is a powerful tool for future infra-red metamaterials applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.