We report on 980nm InGaAs∕AlGaAs lasers with a broad waveguide based on a longitudinal photonic band crystal concept. The beam divergence measured as full width at half maximum was as narrow as <5° (vertical). Broad area 100μm multimode devices demonstrated >15W pulsed operation as limited by the current source. Significantly increased modal spot size enabled stable single lateral mode operation in broad ridge 10μm stripes. Maximum continuous wave power in single mode regime of 1.3W for 10μm wide stripe lasers was obtained, being limited by the catastrophic degradation of the unpassivated laser facets.
A passively Q-switched diode-pumped Tm:YLF laser with polycrystalline Cr:ZnSe as the saturable absorber is demonstrated for the first time, to the best of our knowledge. By using saturable absorbers with different initial transmission, the maximum pulse energy reached 4.22 mJ with peak power of 162.3 kW for a pulse duration of 26 ns. The maximum output average power amounted to 2.2 W. These results constitute significant improvement from the highest average power, pulse energy and peak power results for the PQS Tm:YLF laser to date.
GaInP–AlGaInP lasers with broad waveguide based on a longitudinal photonic band gap crystal have been studied. Lasers with 10μm stripe width exhibit single transverse mode operation. The vertical beam divergence is about 8° and is insensitive to the drive current. The aspect ratio is ∼2:1. The quality factor for the lateral beam M2 is less than 2 in single mode regime under pulsed excitation. The total maximum continuous wave output power in the single mode regime at 20°C is more than 115mW (for high reflection/antireflection facet coatings), indicating a dramatic reduction in the catastrophic optical mirror damage problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.