Neuronal injury in bacterial meningitis is caused by the interplay of host inflammatory responses and direct bacterial toxicity. We investigated the mechanisms by which pneumolysin, a cytosolic pneumococcal protein, induces damage to neurons. The toxicity after exposure of human SH-SY5Y neuroblastoma cells and hippocampal organotypic cultures to pneumolysin was time- and dose-dependent. Pneumolysin led to a strong calcium influx apparently mediated by pores on the cell membrane formed by the toxin itself and not by voltage-gated calcium channels. Buffering of intracellular calcium with BAPTA-AM [1, 2-bis (o-aminophenoxy) ethane N, N, N', N'-tetraacetic acid tetra(acetomethoxyl) ester] improved survival of neuronal cells following challenge with pneumolysin. Western blotting revealed increased phosphorylation of p38 mitogen-activated protein kinase (p38 MAPK) as early as 30 min after challenge with pneumolysin. SB 203580, a potent and selective inhibitor of p38 MAPK, rescued human neuronal cells from pneumolysin-induced death. Inhibition of the mitochondrial permeability transition pore using bongkrekate and caspase inhibition also improved survival following challenge with the toxin. Modulation of cell death pathways activated by pneumolysin may influence the outcome of pneumococcal meningitis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.