Trace gas sensing in the mid-infrared using quantum cascade lasers (QCLs) promises high specificity and sensitivity. We report on the performance of a simple cavity enhanced absorption spectroscopy (CEAS) sensor using a continuous wave external-cavity QCL at 7.4 μm. A noise-equivalent absorption coefficient αmin of 2.6 × 10–8 cm–1 in 625 s was achieved, which corresponds to a detection limit of 6 ± 1 ppb of CH4 in 15 millibars air for the R(3) transition at 1327.074 cm–1. This is the highest value of noise-equivalent absorption and among the longest effective path length (1780 m) reported to date with QCL-based CEAS.
We report on sensitive detection of atmospheric methane employing quantum cascade laser based optical feedback cavity-enhanced absorption spectroscopy (OF-CEAS). An instrument has been built utilizing a continuous-wave distributed feedback quantum cascade laser (cw-QCL) with a V-shaped cavity, a common arrangement that reduces feedback to the laser from non-resonant reflections. The spectrometer has a noise equivalent absorption coefficient of 3.6 × 10-9 cm-1 Hz-1/2 for a spectral scan of CH4 at 7.39 μm. From an Allan-Werle analysis a detection limit of 39 parts per trillion of CH4 at atmospheric pressure within 50 s acquisition time was found.
Three continuous wave external cavity quantum cascade lasers (EC-QCLs) operating between 1305 and 2260 cm −1 (4.42-7.66 μm) have been tested as radiation sources for an absorption spectrometer focused on the analysis of physical and chemical phenomena in molecular plasmas. Based on the wide spectral tunability of EC-QCLs, multiple species detection has become feasible and is demonstrated in a study of low-pressure Ar/N 2 microwave plasmas containing methane as a hydrocarbon precursor. Using the direct absorption technique, the evolution of the concentrations of CH 4 , C 2 H 2 , HCN and H 2 O has been monitored depending on the discharge conditions at a pressure of p = 0.5 mbar and at a frequency of f = 2.45 GHz in a planar microwave plasma reactor. The concentrations were found to be in the range of 10 11 -10 14 molecules cm −3 . In addition, based on the analysis of the line profile of selected absorption lines, the gas temperature T g has been calculated in dependence on the discharge power. T g increased with the power values and was in the range between 400 and 700 K. Further, in a pure He/Ar microwave plasma, the wavelength modulation spectroscopy technique has been applied for the sensitive detection of transient plasma species with absorbencies down to 10 −5 . The typical spectral line width of an EC-QCL under the study was found to be in the range 24 to 38 MHz depending (i) on the chopping technique used and (ii) on a single or averaged measurement approach. Further, different methods for the modulation and tuning of the laser radiation have been tested. Varying the power values of an EC-QCL between 0.1 and 154 mW for direct absorption measurements under low pressure conditions, no saturation effects in determining the concentrations of methane, acetylene and carbon monoxide could be found under the experimental conditions used, i.e. for lines with line strengths between 10 −19 and 10 −22 cm molecule −1 .
This paper describes the first implementation of terahertz (THz) quantum cascade lasers for high-resolution absorption spectroscopy on plasmas. Absolute densities of ground state atomic oxygen were directly obtained by using the fine structure transition at approximately 4.75 THz. Measurements were performed on a low-pressure capacitively coupled radio frequency oxygen discharge. The detection limit in this arrangement was found to be 2∗1013 cm-3, while the measurement accuracy was within 5%, as demonstrated by reference measurements of a well-defined ammonia transition. The results show that the presented method is well suited to measure atomic oxygen densities, and it closes the THz gap for quantitative atomic density measurements in harsh environments such as plasmas.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.