We present the discovery of a Neptune-mass planet OGLE-2007-BLG-368Lb with a planet-star mass ratio of q = [9.5 ± 2.1] × 10 −5 via gravitational microlensing. The planetary deviation was detected in real-time thanks to the high cadence of the Microlensing Observations in Astrophysics survey, real-time light-curve monitoring and intensive follow-up observations. A Bayesian analysis returns the stellar mass and distance at M l = 0.64 +0.21 −0.26 M and D l = 5.9 +0.9 −1.4 kpc, respectively, so the mass and separation of the planet are M p = 20 +7 −8 M ⊕ and a = 3.3 +1.4 −0.8 AU, respectively. This discovery adds another cold Neptune-mass planet to the planetary sample discovered by microlensing, which now comprises four cold Neptune/super-Earths, five gas giant planets, and another sub-Saturn mass planet whose nature is unclear. The discovery of these 10 cold exoplanets by the microlensing method implies that the mass ratio function of cold exoplanets scales as dN pl /d log q ∝ q −0.7±0.2 with a 95% confidence level upper limit of n < −0.35 (where dN pl /d log q ∝ q n). As microlensing is most sensitive to planets beyond the snow-line, this implies that Neptune-mass planets are at least three times more common than Jupiters in this region at the 95% confidence level.
Low-mass protostars are the extrasolar analogues of the natal Solar System. Sophisticated physicochemical models are used to simulate the formation of two protoplanetary discs from the initial prestellar phase, one dominated by viscous spreading and the other by pure infall. The results show that the volatile prestellar fingerprint is modified by the chemistry en route into the disc. This holds relatively independent of initial abundances and chemical parameters: physical conditions are more important. The amount of CO 2 increases via the grain-surface reaction of OH with CO, which is enhanced by photodissociation of H 2 O ice. Complex organic molecules are produced during transport through the envelope at the expense of CH 3 OH ice. Their abundances can be comparable to that of methanol ice (few % of water ice) at large disc radii (R > 30 AU). Current Class II disc models may be underestimating the complex organic content. Planet population synthesis models may underestimate the amount of CO 2 and overestimate CH 3 OH ices in planetesimals by disregarding chemical processing between the cloud and disc phases. The overall C/O and C/N ratios differ between the gas and solid phases. The two ice ratios show little variation beyond the inner 10 AU and both are nearly solar in the case of pure infall, but both are sub-solar when viscous spreading dominates. Chemistry in the protostellar envelope en route to the protoplanetary disc sets the initial volatile and prebiotically-significant content of icy planetesimals and cometary bodies. Comets are thus potentially reflecting the provenances of the midplane ices in the Solar Nebula.
We calculate the minimum mass of heavy elements required in the envelopes of Jupiter and Saturn to match the observed oversolar abundances of volatiles. Because the clathration efficiency remains unknown in the solar nebula, we have considered a set of sequences of ice formation in which the fraction of water available for clathration is varied between 0 and 100%. In all the cases considered, we assume that the water abundance remains homogeneous whatever the heliocentric distance in the nebula and directly derives from a gas phase of solar composition. Planetesimals then form in the feeding zones of Jupiter and Saturn from the agglomeration of clathrates and pure condensates in proportions fixed by the clathration efficiency. A fraction of Kr and Xe may have been sequestrated by the H + 3 ion in the form of stable XeH + 3 and KrH + 3 complexes in the solar nebula gas phase, thus implying the formation of at least partly Xeand Kr-impoverished planetesimals in the feeding zones of Jupiter and Saturn. These planetesimals were subsequently accreted and vaporized into the hydrogen envelopes of Jupiter and Saturn, thus engendering volatiles enrichments in their
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.