Borexino, a large volume detector for low energy neutrino spectroscopy, is currently running underground at the Laboratori Nazionali del Gran Sasso, Italy. The main goal of the experiment is the real-time measurement of sub MeV solar neutrinos, and particularly of the mono energetic (862 keV) Be7 electron capture neutrinos, via neutrino-electron scattering in an ultra-pure liquid scintillator. This paper is mostly devoted to the description of the detector structure, the photomultipliers, the electronics, and the trigger and calibration systems. The real performance of the detector, which always meets, and sometimes exceeds, design expectations, is also shown. Some important aspects of the Borexino project, i.e. the fluid handling plants, the purification techniques and the filling procedures, are not covered in this paper and are, or will be, published elsewhere (see Introduction and Bibliography)
The solvent effect on the photophysical and photochemical properties of the iodides of three trans (E) isomers of 2-D-vinyl,1-methylpyridinium, where D is a donor group (4-dimethylaminophenyl, 3,4,5-trimethoxyphenyl and 1-pyrenyl), was studied by stationary and transient absorption techniques. The results obtained allowed the negative solvatochromism and relaxation pathways of the excited states in the singlet manifold to be reasonably interpreted. Resorting to ultrafast absorption techniques and DFT calculations allowed information on the excited state dynamics and the role of the solvent-controlled intramolecular charge transfer (ICT) processes to be obtained. The structure-dependent excited state dynamics in nonpolar solvents, where the ICT is slower than solvent rearrangement, and in polar solvents, where an opposite situation is operative, was thus explained. The push-pull character of the three compounds, particularly the anilino-derivative, suggests their potential application in optoelectronics.
We report the direct measurement of the 7 Be solar neutrino signal rate performed with the Borexino detector at the Laboratori Nazionali del Gran Sasso. The interaction rate of the 0.862 MeV 7 Be neutrinos is 49±3stat±4syst counts/(day·100 ton). The hypothesis of no oscillation for 7 Be solar neutrinos is inconsistent with our measurement at the 4σ C.L.. Our result is the first direct measurement of the survival probability for solar νe in the transition region between matter-enhanced and vacuum-driven oscillations. The measurement improves the experimental determination of the flux of 7 Be, pp, and CNO solar νe, and the limit on the magnetic moment of neutrinos.PACS numbers: 13.35. Hb, 14.60.St, 26.65.+t, 95.55.Vj, 29.40.Mc Neutrino oscillations [1] are the established mechanism to explain the solar neutrino problem, which originated from observations in radiochemical experiments with a sub-MeV threshold [2,3] and from real time observation of high energy neutrinos [4,5]. Neutrino oscillations were also observed in atmospheric neutrinos [4] and have been confirmed with observation of reactorν e [6]. Borexino is the first experiment to report a real-time observation arXiv:0805.3843v2 [astro-ph]
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.