The conventional method of culturing human embryonic stem cells (hESC) is on two-dimensional (2D) surfaces, which is not amenable for scale up to therapeutic quantities in bioreactors. We have developed a facile and robust method for maintaining undifferentiated hESC in three-dimensional (3D) suspension cultures on matrigel-coated microcarriers achieving 2- to 4-fold higher cell densities than those in 2D colony cultures. Stable, continuous propagation of two hESC lines on microcarriers has been demonstrated in conditioned media for 6 months. Microcarrier cultures (MC) were also demonstrated in two serum-free defined media (StemPro and mTeSR1). MC achieved even higher cell concentrations in suspension spinner flasks, thus opening the prospect of propagation in controlled bioreactors.
Chinese hamster ovary (CHO) cell lines are widely used for the expression of therapeutic recombinant proteins, including monoclonal antibodies and other biologics. For manufacturing, cells derived from a single-cell clone are typically used to ensure product consistency. Presently, fetal bovine serum (FBS) is commonly used to support low cell density cultures to obtain clonal cell populations because cells grow slowly, or even do not survive at low cell densities in protein-free media. However, regulatory authorities have discouraged the use of FBS to reduce the risk of contamination by adventitious agents from animal-derived components. In this study, we demonstrated how a complementary mass spectrometry-based shotgun proteomics strategy enabled the identification of autocrine growth factors in CHO cell-conditioned media, which has led to the development of a fully defined single-cell cloning media that is serum and animal component-free. Out of 290 secreted proteins that were identified, eight secreted growth factors were reported for the first time from CHO cell cultures. By supplementing a combination of these growth factors to protein-free basal media, single cell growth of CHO cells was improved with cloning efficiencies of up to 30%, a 2-fold improvement compared to unsupplemented basal media. Complementary effects of these autocrine growth factors with other paracrine growth factors were also demonstrated when the mixture improved cloning efficiency to 42%, similar to that for the conditioned medium.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.