The monocyte/macrophage appears to be the precursor of many of the lipid-laden cells in atherosclerotic lesions, but the mechanism by which these cells accumulate cholesterol to become foam cells remains unclear. We have previously reported that cultured endothelial cells can modify low density lipoprotein (LDL) in a manner that leads to rapid uptake by the acetyl LDL receptor of macrophages. This modification involves free radical-induced peroxidation of LDL and is accompanied by many changes in the physicochemical properties of LDL including increased electrophoretic mobility, increased density, decreased content of esterified cholesterol, hydrolysis of phosphatidylcholine, and fragmentation of apolipoprotein B. Under conditions highly favorable to oxidation, a similar modification can occur even in the absence of cells. In the present studies, oxidation of LDL simply by exposure to 5 microM Cu++ resulted in a modification that was indistinguishable from that produced by endothelial cells. Moreover, it was demonstrated that LDL oxidation by either method is accompanied by a marked decreased in amino group reactivity, comparable to that seen with the chemical modifications of LDL that lead to recognition by the acetyl LDL receptor. Inhibitors of proteolytic enzymes did not reduce fragmentation of apolipoprotein B during oxidation. The rate of catabolism of intravenously injected oxidized LDL in guinea pigs was very rapid, and over 80% of the degradation occurred in the liver. The studies demonstrate that all of the changes associated with endothelial cell modification of LDL can be attributed to oxidation. The cells can, however, promote oxidation under conditions where it would otherwise occur very slowly.(ABSTRACT TRUNCATED AT 250 WORDS)
There is a growing body of evidence that suggests that modification of low density lipoprotein (LDL) in the artery wall may contribute to atherogenesis. A number of physiologically plausible modifications have been studied in vitro, including oxidation, aggregation, formation of complexes with giycosaininoglycans, and generation of LDL-immune complexes. Several studies of the properties of LDL extracted from the aortic intima have been published, but these indicate disagreement about both the nature and the extent of modification of LDL in the artery wall. The objectives of the present study were to determine the nature and extent of modification of LDL extracted from both normal and diseased human aortic intimas and to correlate this with the rate of LDL uptake in cultured cells. Analyses were performed on LDLs isolated from aortic intimas obtained at autopsy or at the time of organ harvest from 33 subjects. LDL from normal intima showed no clear evidence of oxidation but had slightly increased electrophoretic mobility compared with native plasma LDL, whereas LDL from plaques or fatty streaks exhibited variable but usually modest signs of oxidative change. Aortic LDL was more rapidly degraded by cultured macrophages than was plasma LDL and resulted in a greater stimulation of cholesterol esterification. The degree of stimulation of cholesterol esterification was correlated with the extent of modification of LDL as reflected by the degree of apolipoprotein B fragmentation. However, in all aortic LDLs the extent of oxidative change, as assessed by electrophoretic mobility or other physical parameters, was less than that required for scavenger receptor-mediated uptake. In all cases where sufficient amounts of LDL were recovered to permit degradation experiments, the uptake of aortic LDL was nonsaturable and could not be inhibited by polyinosinic acid or acetylated LDL. Chromatography on Sepharose CL-4B showed that most LDLs isolated from plaque contained a fraction that eluted in the void volume, and the size of this void peak correlated well with the stimulation of cholesterol esterification. Electron microscopy showed that the high-molecular-weight fraction contained several different types of aggregates. Some appeared to be clusters of LDL-size particles, but large vesicular structures with numerous adherent LDL particles as well as lipid droplets were also identified. These results indicate that the accelerated uptake by macrophages of LDL isolated from the arterial intima can largely be attributed to phagocytosis of LDL-containing aggregates. Findings consistent with oxidative modiflcation were found in LDL isolated from atherosclerotic plaque, and although this was insufficient to cause uptake via the scavenger receptor pathway, it could have contributed to aggregation. Other mechanisms, such as formation of LDL-immune complexes or interaction of LDL with matrix substances or vesicular structures, probably also contribute to LDL aggregation in the arterial intima. ( Received August 20,1991; revision accepted...
Nonenzymatic glucosylation interferes with recognition of low density lipoprotein (LDL) by its receptor and markedly decreases the rate of plasma clearance of glucosylated LDL, both in experimental animals and in normal human subjects. However, in selected diabetic subjects we have observed a paradoxical increase in the clearance of glucosylated LDL, suggesting the possibility of immune-mediated clearance. Immunoassay demonstrated antibodies specific for glucosylated LDL in the preinjection plasma of each of four such diabetic subjects studied. These antibodies cross-react with other glucosylated proteins and recognize specifically the glucosylated lysine epitope-i.e., glucitollysine. These data suggest that nonenzymatic glucosylation of plasma or structural proteins may render them immunogenic and result in production of autoantibodies that recognize not only the particular immunogen but also many other glucosylated proteins, including glucosylated tissue proteins. These findings may be relevant to the increased prevalence of immune complexes in plasma of diabetic subjects and the late complications of diabetes mellitus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.