MOS-transistor-based current-mode logic (CML)-type (MCML) circuits in high-speed circuit applications often operate as low-swing analog circuits rather than fully switched digital circuits. At these high-speed operations, the effect of the finite input signal slope on the delay of MCML gates significantly increases mainly due to incomplete current steering. Hence, for such cases, the conventional RC delay model which is based on ideal step input assumption fails to track the delay of MCML circuits with errors as high as 40% when a design is optimized for high-speed. In this paper, a comprehensive delay model is proposed that accurately predicts the delay of MCML circuits for all types of operation from low-speed and fully switched to high-speed and low-swing applications by including the input slope effect (ISE) into the conventional RC delay model. Furthermore, the proposed model is extended to multilevel complex logic gates without losing the general RC delay model format. Theoretical results are compared with Spice simulations in a 0.13-m CMOS technology. Results show that the error in delay of the proposed model is less than 20% for all practical designs. The proposed model is still sufficiently tractable to be use in back-of-envelope calculations that achieve close-to-optimum solutions without running extensive parametric simulations. In addition to the achieved accuracy and preserved simplicity, the proposed model enhances the intuitive understanding of MCML gates that simple RC delay model fails to provide.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.