The development of anti-collision robotic systems has undergone several advances in algorithms of route planning. These systems, widely used in autonomous activities, generate free routes of collisions with objects in the workspace of the robot. In this context, the Artificial Potential Fields technique has been the focus of improvements in recent years due to its simplicity of application and efficiency in real-time systems, due to the fact that it does not require a global mapping of the robot's workspace. In spite of its efficiency, this technique is susceptible to local minima problems of different natures, such as: Goals Non-Reachable with Obstacles Nearby and Reacharound Local Minimum Problem. To solve these problems, an improvement called Adaptive Artificial Potential Fields is used in conjunction with the Subgoal Selection, Goal Configuration Sampling and Convex Hull techniques. The Robot Operating System (ROS) framework and a collaborative robot manipulator UR5 validate the proposed method. Resumo: O desenvolvimento de sistemas robóticos anticolisão tem passado por diversos avanços em algoritmos de planejamento de rotas. Estes sistemas, amplamente utilizados em atividades autônomas, geram rotas livres de colisões com objetos naárea de trabalho do robô. Neste contexto, a técnica dos Campos Potenciais Artificiais tem sido foco de melhorias nosúltimos anos devido a sua simplicidade de aplicação e eficiência em sistemas de tempo real, pelo fato de não necessitar de um mapeamento global daárea de trabalho do robô. Apesar da sua eficiência, esta técnicaé suscetível a problemas de mínimos locais de naturezas diferentes, como: Goals Non-Reachable with Obstacles Nearby e Reacharound Local Minimum Problem. Para solucionar estes problemas, uma melhoria chamada de Campos Potenciais Artificiais Adaptativosé utilizada em conjunto com as técnicas de Subgoal Selection, Goal Configuration Sampling e Convex Hull. Resultados experimentais com o framework Robot Operating System (ROS) e um Manipulador Robótico colaborativo UR5 validam a abordagem proposta.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.