Epilepsy is a neuronal disorder allied with distinct neurological and behavioral alterations characterized by recurrent spontaneous epileptic seizures. Impairment of the cognitive performances such as learning and memory is frequently observed in epileptic patients. Anti-epileptic drugs (AEDs) are efficient to the majority of patients. However, 30% of this population seems to be refractory to the drug treatment. These patients are not seizure-free and frequently they show impaired cognitive functions. Unfortunately, as a side effect, some AEDs could contribute to such impairment. The major problem associated with conducting studies on epilepsy-related cognitive function is the lack of easy, rapid, specific and sensitive in vivo testing models. However, by using a number of different techniques and parameters in the zebrafish, we can incorporate the unique feature of specific disorder to study the molecular and behavior basis of this disease. In the view of current literature, the goal of the study was to develop a zebrafish model of epilepsy induced cognitive dysfunction. In this study, the effect of AEDs on locomotor activity and seizure-like behavior was tested against the pentylenetetrazole (PTZ) induced seizures in zebrafish and epilepsy associated cognitive dysfunction was determined using T-maze test followed by neurotransmitter estimation and gene expression analysis. It was observed that all the AEDs significantly reversed PTZ induced seizure in zebrafish, but had a negative impact on cognitive functions of zebrafish. AEDs were found to modulate neurotransmitter levels, especially GABA, glutamate, and acetylcholine and gene expression in the drug treated zebrafish brains. Therefore, combination of behavioral, neurochemical and genenetic information, makes this model a useful tool for future research and discovery of newer and safer AEDs.
In this study, we aimed to investigate the effect of the two main active cannabinoids extracted from cannabis: Δ-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) on two distinct behavioral models of induced neuro-hyperactivity. We have taken advantage of two previously developed zebrafish models of neuro-hyperactivity: a chemically induced pentylenetetrazole model and a genetic model caused by loss-of-function mutations in the GABA receptor subunit alpha 1 (GABRA1−/−). Both CBD and THC have a significant effect on the behavioral changes induced by both models. Importantly, we have also shown that when applied together at different ratios of THC to CBD (1:1, 1:5, and 1:10), there was a synergistic effect at a ratio of 1:1. This was particularly important for the genetically induced neuro-hyperactivity as it brought the concentrations of THC and CBD required to oppose the induced behavioral changes to levels that had much less of an effect on baseline larval behavior. The results of this study help to validate the ability of THC and CBD to oppose neuro-hyperactivity linked to seizure modalities. Additionally, it appears that individually, each cannabinoid may be more effective against the chemically induced model than against the GABRA1−/− transgenic model. However, when applied together, the concentration of each compound required to oppose the GABRA1−/− light-induced activity was lowered. This is of particular interest since the use of cannabinoids as therapeutics can be dampened by their side-effect profile. Reducing the level of each cannabinoid required may help to prevent off target effects that lead to side effects. Additionally, this study provides a validation of the complimentary nature of the two zebrafish models and sets a platform for future work with cannabinoids, particularly in the context of neuro-hyperactivity disorders such as epilepsy.
Epilepsy is a common primary neurological disorder characterized by the chronic tendency of a patient to experience epileptic seizures, which are abnormal body movements or cognitive states that result from excessive, hypersynchronous brain activity. Epilepsy has been found to have numerous etiologies and, although about two-thirds of epilepsies were classically considered idiopathic, the majority of those are now believed to be of genetic origin. Mutations in genes involved in gamma-aminobutyric acid (GABA)-mediated inhibitory neurotransmission have been associated with a broad range of epilepsy syndromes. Mutations in the GABA-A receptor gamma 2 subunit gene (GABRG2), for example, have been associated with absence epilepsy and febrile seizures in humans. Several rodent models of GABRG2 loss of function depict clinical features of the disease; however, alternative genetic models more amenable for the study of ictogenesis and for high-throughput screening purposes are still needed. In this context, we generated a gabrg2 knockout (KO) zebrafish model (which we called R23X) that displayed light/dark-induced reflex seizures. Through high-resolution in vivo calcium imaging of the brain, we showed that this phenotype is associated with widespread increases in neuronal activity that can be effectively alleviated by the anti-epileptic drug valproic acid. Moreover, these seizures only occur at the larval stages but disappear after 1 week of age. Interestingly, our whole-transcriptome analysis showed that gabrg2 KO does not alter the expression of genes in the larval brain. As a result, the gabrg2−/− zebrafish is a novel in vivo genetic model of early epilepsies that opens new doors to investigate ictogenesis and for further drug-screening assays.
A Central nervous system (CNS) disease is the one which affects either the spinal cord or brain and causing neurological or psychiatric complications. During the nineteenth century, modern medicines have occupied the therapy for many ailments and are widely used these days. Herbal medicines have often maintained popularity for historical and cultural reasons and also considered safer as they originate from natural sources. Embelin is a plant-based benzoquinone which is the major active constituent of the fruits of Embelia ribes Burm. It is an Indo-Malaysian species, extensively used in various traditional medicine systems for treating various diseases. Several natural products including quinone derivatives, which are considered to possess better safety and efficacy profile, are known for their CNS related activity. The bright orange hydroxybenzoquinone embelin-rich fruits of E. ribes have become popular in ethnomedicine. The present systematic review summarizes the effects of embelin on central nervous system and related diseases. A PRISMA model for systematic review was utilized for search. Various electronic databases such as Pubmed, Springer, Scopus, ScienceDirect, and Google Scholar were searched between January 2000 and February 2016. Based on the search criteria for the literature, 13 qualified articles were selected and discussed in this review. The results of the report showed that there is a lack of translational research and not a single study was found in human. This report gives embelin a further way to be explored in clinical trials for its safety and efficacy.
Epileptic seizures result from abnormal brain activity and can affect motor, autonomic and sensory function; as well as, memory, cognition, behavior, or emotional state. Effective anti-epileptic drugs (AEDs) are available but have tolerability issues due to their side effects. The Malaysian herb Orthosiphon stamineus, is a traditional epilepsy remedy and possesses anti-inflammatory, anti-oxidant and free-radical scavenging abilities, all of which are known to protect against seizures. This experiment thus aimed to explore if an ethanolic leaf extract of O. stamineus has the potential to be a novel symptomatic treatment for epileptic seizures in a zebrafish model; and the effects of the extract on the expression levels of several genes in the zebrafish brain which are associated with seizures. The results of this study indicate that O. stamineus has the potential to be a novel symptomatic treatment for epileptic seizures as it is pharmacologically active against seizures in a zebrafish model. The anti-convulsive effect of this extract is also comparable to that of diazepam at higher doses and can surpass diazepam in certain cases. Treatment with the extract also counteracts the upregulation of NF-κB, NPY and TNF-α as a result of a Pentylenetetrazol (PTZ) treated seizure. The anti-convulsive action for this extract could be at least partially due to its downregulation of TNF-α. Future work could include the discovery of the active anti-convulsive compound, as well as determine if the extract does not cause cognitive impairment in zebrafish.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.