The growth of SrRuO$$_3$$ 3 (SRO) thin film with high-crystallinity and low residual resistivity (RR) is essential to explore its intrinsic properties. Here, utilizing the adsorption-controlled growth technique, the growth condition of initial SrO layer on TiO$$_2$$ 2 -terminated SrTiO$$_3$$ 3 (STO) (001) substrate was found to be crucial for achieving a low RR in the resulting SRO film grown afterward. The optimized initial SrO layer shows a c(2 $$\times $$ × 2) superstructure that was characterized by electron diffraction, and a series of SRO films with different thicknesses (ts) were then grown. The resulting SRO films exhibit excellent crystallinity with orthorhombic-phase down to $$t \approx $$ t ≈ 4.3 nm, which was confirmed by high resolution X-ray measurements. From X-ray azimuthal scan across SRO orthorhombic (02 ± 1) reflections, we uncover four structural domains with a dominant domain of orthorhombic SRO [001] along cubic STO [010] direction. The dominant domain population depends on t, STO miscut angle ($$\alpha $$ α ), and miscut direction ($$\beta $$ β ), giving a volume fraction of about 92 $$\%$$ % for $$t \approx $$ t ≈ 26.6 nm and $$(\alpha , \beta ) \approx $$ ( α , β ) ≈ (0.14$$^{\mathrm{o}}$$ o , 5$$^{\mathrm{o}}$$ o ). On the other hand, metallic and ferromagnetic properties were well preserved down to t$$\approx $$ ≈ 1.2 nm. Residual resistivity ratio (RRR = $$\rho ({\mathrm{300 K}})$$ ρ ( 300 K ) /$$\rho ({\mathrm{5K}})$$ ρ ( 5 K ) ) reduces from 77.1 for t$$\approx $$ ≈ 28.5 nm to 2.5 for t$$\approx $$ ≈ 1.2 nm, while $$\rho ({\mathrm{5K}})$$ ρ ( 5 K ) increases from 2.5 $$\upmu \Omega $$ μ Ω cm for t$$\approx $$ ≈ 28.5 nm to 131.0 $$\upmu \Omega $$ μ Ω cm for t$$\approx $$ ≈ 1.2 nm. The ferromagnetic onset temperature ($$T'_{\mathrm{c}}$$ T c ′ ) of around 151 K remains nearly unchanged down to t$$\approx $$ ≈ 9.0 nm and decreases to 90 K for t$$\approx $$ ≈ 1.2 nm. Our finding thus provides a practical guideline to achieve high crystallinity and low RR in ultra-thin SRO films by simply adjusting the growth of initial SrO layer.
Oxygen vacancy is known to play an important role for the physical properties in SrTiO3(STO)-based systems. On the surface, rich structural reconstructions had been reported owing to the oxygen vacancies, giving rise to metallic surface states and unusual surface phonon modes. More recently, an intriguing phenomenon of a huge superconducting transition temperature enhancement was discovered in a monolayer FeSe on STO substrate, where the surface reconstructed STO (SR-STO) may play a role. In this work, SR-STO substrates were prepared via thermal annealing in ultra-high vacuum followed by low energy electron diffraction analyses on surface structures. Thin Nb films with different thicknesses (d) were then deposited on the SR-STO. The detailed studies of the magnetotransport and superconducting property in the Al(1 nm)/Nb(d)/SR-STO samples revealed a large positive magnetoresistance and a pronounced resistance peak near the onset of the resistive superconducting transition in the presence of an in-plane field. Remarkably, the amplitude of the resistance peak increases with increasing fields, reaching a value of nearly 57% of the normal state resistance at 9 T. Such resistance peaks were absent in the control samples of Al(1 nm)/Nb(d)/STO and Al(1 nm)/Nb(d)/SiO2. Combining with DFT calculations for SR-STO, we attribute the resistance peak to the interface resistance from the proximity coupling of the superconducting niobium to the field-enhanced long-range magnetic order in SR-STO that arises from the spin-polarized in-gap states due to oxygen vacancies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.