Farmers routinely determine irrigation requirements from visual observations and cultivation experience, but this can lead to under- or over-irrigation. To establish precise irrigation technology for strawberry cultivation, the average daily evapotranspiration and water requirements were estimated according to the environmental data: air temperature and humidity from the center of the greenhouses and solar radiation from outside greenhouses. Makkink FAO24 equations (temperature and cloudiness) were used to estimate the evapotranspiration and water requirements. The temperature equation showed higher correlation coefficients in solar radiation (R2 = 0.60), evapotranspiration (R2 = 0.76), and water requirements (R2 = 0.69) than other tested equations. The daily irrigation, calculated from the estimated evapotranspiration, was 3.8 tons/10a. It is possible to develop a precision irrigation system from estimated evapotranspiration during the winter cultivation of “Seolhyang” strawberries in South Korea.
Far-red light was excluded in photosynthetic photon flux; however, recent studies have shown that it increases photosynthetic capacity. In addition, there were few studies on the whole canopy photosynthetic rate and continuous changes of morphology on cucumber seedlings affected by far-red light. This study evaluated the effect of conventional white LEDs adding far-red light on cucumber seedlings using a semi-open chamber system for the measurement of the whole canopy gas exchange rate, and the Raspberry Pi-based imaging system for the analysis of a continuous image. In the image, through the imaging system, it was confirmed that far-red light promoted the germination rate of cucumber seedlings and enhanced early growth. However, the dry weight of the shoot and root did not increase. The measured net apparent CO2 assimilation rate was improved by an increasing leaf area during the cultivation period. The conventional white LED light source with added far-red light increased the photosynthetic rate of cucumber seedlings’ whole canopy. However, at the early seedling stage, plant height and leaf area of the whole canopy was increased by far-red light, and it was revealed that the image data saturated faster. It was considered that the photosynthetic efficiency decreased due to a shading effect of the limited planting density of the cell tray. The results found that using appropriate far-red light, considering planting density, could increase the photosynthetic rate of the whole canopy of crops, thereby promoting crop growth, but it was judged that the use of far-red light in the early growth stage of cucumber seedlings should be considered carefully.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.