We have developed and characterized an imaging instrument to measure the spatial properties of the diffuse near-infrared extragalactic background light (EBL) in a search for fluctuations from z > 6 galaxies during the epoch of reionization. The instrument is part of the Cosmic Infrared Background Experiment (CIBER), designed to observe the EBL above Earth's atmosphere during a suborbital sounding rocket flight. The imaging instrument incorporates a 2 • × 2 • field of view to measure fluctuations over the predicted peak of the spatial power spectrum at 10 arcmin, and 7 × 7 pixels, to remove lower redshift galaxies to a depth sufficient to reduce the low-redshift galaxy clustering foreground below instrumental sensitivity. The imaging instrument employs two cameras with Δλ/λ ∼ 0.5 bandpasses centered at 1.1 μm and 1.6 μm to spectrally discriminate reionization extragalactic background fluctuations from local foreground fluctuations. CIBER operates at wavelengths where the electromagnetic spectrum of the reionization extragalactic background is thought to peak, and complements fluctuation measurements by AKARI and Spitzer at longer wavelengths. We have characterized the instrument in the laboratory, including measurements of the sensitivity, flat-field response, stray light performance, and noise properties. Several modifications were made to the instrument following a first flight in 2009 February. The instrument performed to specifications in three subsequent flights, and the scientific data are now being analyzed.
The SPEAR (or 'FIMS') instrumentation has been used to conduct the first large-scale spectral mapping of diffuse cosmic far ultraviolet (FUV, 900-1750 AA) emission, including important diagnostics of interstellar hot (10^4 K - 10^6 K) and photoionized plasmas, H_2, and dust scattered starlight. The instrumentation's performance has allowed for the unprecedented detection of astrophysical diffuse far UV emission lines. A spectral resolution of 550 and an imaging resolution of 5' is achieved on-orbit in the Short (900 - 1175 AA) and Long (1335 - 1750 AA) bandpass channels within their respective 7.4 deg x 4.3' and 4.0 deg x 4.6' fields of view. We describe the SPEAR imaging spectrographs, their performance, and the nature and handling of their data
We present SPEAR/FIMS far-ultraviolet observations near the North Ecliptic Pole. This area, at b ∼ 30 • and with intermediate Hi column, seems to be a fairly typical line of sight that is representative of general processes in the diffuse ISM. We detect a surprising number of emission lines of many elements at various ionization states representing gas phases from the warm neutral medium (WNM) to the hot ionized medium (HIM). We also detect fluorescence bands of H 2 , which may be due to the ubiquitous diffuse H 2 previously observed in absorption.
The "Spectroscopy of Plasma Evolution from Astrophysical Radiation" (SPEAR, also known as the "FarUltraviolet Imaging Spectrograph") instruments, flown aboard the STSAT-1 satellite mission, have provided the first large-area spectral mapping of the cosmic far-ultraviolet (FUV; 900-1750 ) background. We describe the A mission and its science motivation, the mission data and their processing, and the effects of mission performance on the science data. We present the first map of the cosmic FUV background (1360-1710 ) over most of the A sky as an example of the mission results. These SPEAR data reveal diffuse radiation from warm and hot (10 4 -10 6 K) plasma, molecular hydrogen fluorescence, and dust-scattered starlight. They allow for an unprecedented characterization of the spectral emission from a variety of environments, including the general interstellar medium (ISM), molecular clouds, supernova remnants, and superbubbles.
The x-ray imaging crystal spectrometer (XICS) for the Korea Superconducting Tokamak Advanced Research has been first applied for the experimental campaign in 2009. The XICS was designed to provide measurements of the profiles of the ion and electron temperatures from the heliumlike argon (Ar XVII) spectra. The basic functions of the XICS are properly working although some satellites lines are not well matched with the expected theoretical values. The initial experimental results from the XICS are briefly described.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.