This paper focuses on the optimal design of connecting rods and optimal design of a particle sensor system in diesel engines in order to save material, reduce costs and enhance quality. Optimization is very significant for developing better designs and means less material, lower costs and better conditions. Topology and topography optimization are new but likewise very important optimization approaches for the automotive industry. One of the aims of this study is to create an optimal design for connecting rod components and to use these components in diesel engines to comply with new emission regulations. An analysis of the connecting rods of an existing model was conducted using mathematical data obtained from numerical formulas in order to determine if the part was suitable for topology optimization. According to the results obtained from the topology optimization of the existing model, a new design was created. A comparison of the new design with the existing one showed that the mass of the model was reduced by 18 %, while all product expectations were me. Another purpose of the study is to provide an optimal design for a particle sensor system and utilize this system in automobiles to achieve the new emission values required by Euro-Norm 6c regulations. Within the scope of this optimization study, a specific particle measurement system foreseen for Renault 1.5 dCi engines was considered and designed optimally. According to the output of the topology and topography optimization methods, the particle sensor system was designed optimally, and the mass of the system was reduced by 26.7 %.
This paper focuses on creating an optimum design and development of thermo-plunger parts for commercial vehicles in order to save material, reduce mass and make more sustainable automobiles. In this paper, natural frequency analysis, topology, and topography optimization methods have been used to create a new design for the thermo-plunger part. Thermo-plunger means an electric heater that is used for heating the inside of automobiles effectively and quickly and providing customer thermal comfort. It is positioned in the vehicle body, and its support parts have been developed by structural optimization techniques because there is not enough space in the engine compartment for automatic transmission commercial vehicles. The aim of this study is to make a lightweight and reinforced thermo-plunger support part design. Initially, a draft design was created in 3D model software. After that, topology and topography optimizations were applied on this draft design. At the end of studies, a final optimum support design has been obtained. The final design is 41.1% lighter than the initial design. At the same time, above 50 Hz natural frequency value has been obtained on the final design to avoid resonance problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.