This paper reports a new, successful, utilization of NIR FT Raman spectroscopy for determinining the polymorphic transformation of native cellulose I into the allomorph cellulose II quantitatively. A rapid prediction of the transformation order is made possible by applying multivariate linear regression to the FT Raman spectral data of alkali-treated cellulose pulps. Simultaneously, changes in the crystallinity of cellulose I of these pulps were followed with respect to the lattice conversion process. The application of both multivariate quantification methods to the FT Raman spectra of the alkali-treated pulps yields a corrected polymorphic transformation order and enables the quantitative description to be made of the cellulose lattice conversion process as a system consisting of three participating forms of cellulose: crystalline cellulose I, amorphous cellulose and cellulose II.
A fully bleached birch kraft pulp was treated with acidic hydrogen peroxide in the presence of ferrous ions (Fenton's reagent) and thereafter treated mechanically in a colloid mill to produce a product containing microfibrillated cellulose (MFC). The produced MFC products were chemically and morphologically characterized and compared with MFC products produced without pretreatment as well as with enzymatic hydrolysis. Fenton treatment resulted in an increase in total charge and number of carbonyl groups while the intrinsic viscosity decreased. The Fenton treated pulps were easier to process mechanically i.e. they reached a higher specific surface area at a given mechanical treatment time and the MFC produced had a stable water-fibre suspension for at least 8 weeks compared to enzymatic pretreated pulps and pulps not subjected to any pretreatment.
The amount of disordered material in two types of hardwood kraft pulps was estimated by determining the weight loss at the point where the levelling-off degree of polymerisation (LODP) was reached. The pulps used were commercial pulps viz (1)one conventional birch kraft and (2)one mixed hardwood (MHW) kraft pulp that had been prehydrolysed prior to cooking. The results indicated that the hemicellulose xylan is closely associated with the cellulose in commercial birch pulps. It is therefore only possible to use LODP as a measure of the crystallite length of hardwood cellulose in highly purified pulps, such as prehydrolysed kraft pulp. A model explaining the LODP-results is proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.