We report here on our investigations of structure-property correlations in soluble organic semiconductors. To develop formulations for mass printing of semiconductor films, a series of alkoxy-and alkyldisubstituted symmetric phenylene thiophene co-oligomers (disubstituted-PTTP) were systematically synthesized to achieve high solubility in common organic solvents. Solubilities of up to 40% by weight in tetrahydrofuran at room temperature were achieved by introducing branching at various positions on the terminal chains, and by silyloxy or hydroxy functionalization of the chains. Concomitant with the solubility increase, however, mobilities and I on /I off ratios of these materials in TFT devices fall several orders of magnitude. X-ray diffraction of the semiconductor films reveals increasing tilt of the molecular orientation on the substrate with an increase in steric crowding near the PTTP core. This indicates that π-stacking of these molecules along the channel between the source and drain is hampered and leads to the observed inverse interdependence of solubility and the field effect mobility.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.