[1] We have developed a numerical model that solves the time-dependent, onedimensional, coupled continuity and momentum equations for an arbitrary number of charged and neutral particle species. The model includes production and loss of particles due to ionization, recombination, and attachment of ions and electrons by heavy aerosol particles, and transport due to gravity and multipolar diffusion. The model is used to study the response of the mesopause plasma to small-scale, aerosol particle density perturbations. We find that for aerosol structures on the order of a few meters, electron attachment and ambipolar diffusion are the dominant processes, leading to small-scale electron perturbations that can cause polar mesosphere summer echoes (PMSEs). Moreover, for small aerosol particles, with radii on the order of 10 nm or less, ambipolar diffusion leads to an anticorrelation between electron and ion densities, which is in agreement with most rocket observations. These small-scale structures persist as long as the aerosol layer persists, which will be limited by aerosol particle diffusion. For 10-nm particles, this diffusive lifetime will be on the order of hours. The few instances where rocket observations find instead a correlation between electron and ion densities can be explained either by the aerosol particles becoming large, on the order of 50 nm or more, in which case ion attachment becomes important, or by rapid evaporation of aerosol particles. In the latter case, evaporation must be sufficiently fast to overcome ambipolar diffusion. Citation: Lie-Svendsen, Ø., T. A. Blix, U.-P. Hoppe, and E. V. Thrane, Modeling the plasma response to small-scale aerosol particle perturbations in the mesopause region,
Abstract.A coordinated experiment involving ionospheric heating and VHF observations of polar mesosphere summer echoes (PMSE) has recently been conducted at the EISCAT facility near Troms0, Norway. We have demonstrated for the first time that ionospheric heating can influence VHF radar returns associated with PMSE. Artificially elevating the electron temperatures within the PMSE layer has been shown to reduce the echo power. Based on this and other results from the experiment, it is suggested that the observed reduction in PMSE power is related to an enhancement of the electron diffusivity through the heating.
Abstract. We present in situ observations of meteoric smoke particles (MSP) obtained during three sounding rocket flights in December 2010 in the frame of the final campaign of the Norwegian-German ECOMA project (ECOMA = Existence and Charge state Of meteoric smoke particles in the Middle Atmosphere). The flights were conducted before, at the maximum activity, and after the decline of the Geminids which is one of the major meteor showers over the year. Measurements with the ECOMA particle detector yield both profiles of naturally charged particles (Faraday cup measurement) as well as profiles of photoelectrons emitted by the MSPs due to their irradiation by photons of a xenon-flash lamp. The column density of negatively charged MSPs decreased steadily from flight to flight which is in agreement with a corresponding decrease of the sporadic meteor flux recorded during the same period. This implies that the sporadic meteors are a major source of MSPs while the additional influx due to the shower meteors apparently did not play any significant role. Surprisingly, the profiles of photoelectrons are only partly compatible with this observation: while the photoelectron current profiles obtained during the first and third flight of the campaign showed a qualitatively similar behaviour as the MSP charge density data, the profile from the second flight (i.e., at the peak of the Geminids) shows much smaller photoelectron currents. This may tentatively be interpreted as a different MSP composition (and, hence, different photoelectric properties) during this second flight, but at this stage we are not in a position to conclude that there is a cause and effect relation between the Geminids and this observation. Finally, the ECOMA particle detector used during the first and third flight employed three instead of only one xenon flash lamp where each of the three lamps used for one flight had a different window material resulting in different cut off wavelengths for these three lamp types. Taking into account these data along with simple model estimates as well as rigorous quantum chemical calculations, it is argued that constraints on MSP sizes, work function and composition can be inferred. Comparing the measured data to a simple model of the photoelectron currents, we tentatively conclude that we observed MSPs in the 0.5-3 nm size range with generally increasing particle size with decreasing altitude. Notably, this size information can be obtained because different MSP particle sizes are expected to result in different work functions which is both supported by simple classical arguments as well as quantum chemical calculations. clusters, rather than metal silicates, are the major constituents of the smoke particles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.