Sarcomeres are the structural units of the contractile apparatus in cardiac and skeletal muscle cells. Changes in sarcomere characteristics are indicative of changes in the sarcomeric proteins and function during development and disease. Assessment of sarcomere length, alignment, and organization provides insight into disease and drug responses in striated muscle cells and models, ranging from cardiomyocytes and skeletal muscle cells derived from human pluripotent stem cells to adult muscle cells isolated from animals or humans. However, quantification of sarcomere length is typically time consuming and prone to user‐specific selection bias. Automated analysis pipelines exist but these often require either specialized software or programming experience. In addition, these pipelines are often designed for only one type of cell model in vitro. Here, we present an easy‐to‐implement protocol and software tool for automated sarcomere length and organization quantification in a variety of striated muscle in vitro models: Two dimensional (2D) cardiomyocytes, three dimensional (3D) cardiac microtissues, isolated adult cardiomyocytes, and 3D tissue engineered skeletal muscles. Based on an existing mathematical algorithm, this image analysis software (SotaTool) automatically detects the direction in which the sarcomere organization is highest over the entire image and outputs the length and organization of sarcomeres. We also analyzed videos of live cells during contraction, thereby allowing measurement of contraction parameters like fractional shortening, contraction time, relaxation time, and beating frequency. In this protocol, we give a step‐by‐step guide on how to prepare, image, and automatically quantify sarcomere and contraction characteristics in different types of in vitro models and we provide basic validation and discussion of the limitations of the software tool. © 2022 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: Staining and analyzing static hiPSC‐CMs with SotaTool Alternate Protocol: Sample preparation, acquisition, and quantification of fractional shortening in live reporter hiPSC lines Support Protocol 1: Finding the image resolution Support Protocol 2: Advanced analysis settings Support Protocol 3: Finding sarcomere length in non‐aligned cells
Cardiovascular disorders remain a critical health issue worldwide. While animals have been used extensively as experimental models to investigate heart disease mechanisms and develop drugs, their inherent drawbacks have shifted focus to more human-relevant alternatives. Human embryonic and induced pluripotent stem cells (hESCs and hiPSCs, collectively called hPSCs) have been identified as a source of different cardiac cells, but to date, they have rarely offered functional and structural maturity of the adult human heart. However, the combination of patient derived hPSCs with microphysiological tissue engineering approaches has presented new opportunities to study heart development and disease and identify drug targets. These models often closely mimic specific aspects of the native heart tissue including intercellular crosstalk and microenvironmental cues such that maturation occurs and relevant disease phenotypes are revealed. Most recently, organ-on-chip technology based on microfluidic devices has been combined with stem cell derived organoids and microtissues to create vascularized structures that can be subjected to fluidic flow and to which immune cells can be added to mimic inflammation of tissue postinjury. Similarly, the integration of nerve cells in these models can provide insight into how the cardiac nervous system affects heart pathology, for example, after myocardial infarction. Here, we consider these models and approaches in the context of cardiovascular disease together with their applications and readouts. We reflect on perspectives for their future implementation in understanding disease mechanisms and the drug discovery pipeline.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.