Wearable devices are ideal for personalized electronic applications in several domains such as healthcare, entertainment, sports and military. Although wearable technology is a growing market, current wearable devices are predominantly battery powered accessory devices, whose form factors also preclude them from utilizing the large area of the human body for spatiotemporal sensing or energy harvesting from body movements. E-textiles provide an opportunity to expand on current wearables to enable such applications via the larger surface area offered by garments, but consumer devices have been few and far between because of the inherent challenges in replicating traditional manufacturing technologies (that have enabled these wearable accessories) on textiles. Also, the powering of e-textile devices with battery energy like in wearable accessories, has proven incompatible with textile requirements for flexibility and washing. Although current e-textile research has shown advances in materials, new processing techniques, and one-off e-textile prototype devices, the pathway to industry scale commercialization is still uncertain. This paper reports the progress on the current technologies enabling the fabrication of e-textile devices and their power supplies including textile-based energy harvesters, energy storage mechanisms, and wireless power transfer solutions. It identifies factors that limit the adoption of current reported fabrication processes and devices in the industry for mass-market commercialization.
INDEX TERMSWearables, e-textile devices, e-textile power sources, e-textile manufacturing and scalability.
This is a PDF file of an article that has undergone enhancements after acceptance, such as the addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive version of record. This version will undergo additional copyediting, typesetting and review before it is published in its final form, but we are providing this version to give early visibility of the article. Please note that, during the production process, errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.
The effect of water wave impacts and breakdown on the output performance of Water-Dielectric Single Electrode Mode Triboelectric Nanogenerators (WDSE-TENG) has been evaluated. When water contacts a TENG consisting of a hydrophobic dielectric layer, the triboelectric effect is generated with a net negative charge on the dielectric material and net positive charge on the water surface. The hydrophobic dielectric materials, which show the highest electrical output performance in contact with water, were FEP, silicone rubber and polyimide. The average output power of each sample for a load resistance of 10 MΩ was found to be in the range 14.69 to 19.12 µW. The results demonstrate that WDSE-TENG devices can work as an alternative energy harvesting mechanism by using water as a triboelectric material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.