We present Marian, an efficient and selfcontained Neural Machine Translation framework with an integrated automatic differentiation engine based on dynamic computation graphs. Marian is written entirely in C++. We describe the design of the encoder-decoder framework and demonstrate that a research-friendly toolkit can achieve high training and translation speed.
This paper describes the University of Edinburgh's submissions to the WMT17 shared news translation and biomedical translation tasks. We participated in 12 translation directions for news, translating between English and Czech, German, Latvian, Russian, Turkish and Chinese. For the biomedical task we submitted systems for English to Czech, German, Polish and Romanian. Our systems are neural machine translation systems trained with Nematus, an attentional encoder-decoder. We follow our setup from last year and build BPE-based models with parallel and backtranslated monolingual training data. Novelties this year include the use of deep architectures, layer normalization, and more compact models due to weight tying and improvements in BPE segmentations. We perform extensive ablative experiments, reporting on the effectivenes of layer normalization, deep architectures, and different ensembling techniques.
A good decoding algorithm is critical to the success of any statistical machine translation system. The decoder's job is to find the translation that is most likely according to set of previously learned parameters (and a formula for combining them). Since the space of possible translations is extremely large, typical decoding algorithms are only able to examine a portion of it, thus risking to miss good solutions. In this paper, we compare the speed and output quality of a traditional stack-based decoding algorithm with two new decoders: a fast greedy decoder and a slow but optimal decoder that treats decoding as an integer-programming optimization problem.
A good decoding algorithm is critical to the success of any statistical machine translation system. The decoder's job is to find the translation that is most likely according to set of previously learned parameters (and a formula for combining them). Since the space of possible translations is extremely large, typical decoding algorithms are only able to examine a portion of it, thus risking to miss good solutions. In this paper, we compare the speed and output quality of a traditional stack-based decoding algorithm with two new decoders: a fast greedy decoder and a slow but optimal decoder that treats decoding as an integer-programming optimization problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.