Despite recent advances in understanding microbial diversity in skin homeostasis, the relevance of microbial dysbiosis in inflammatory disease is poorly understood. Here we perform a comparative analysis of skin microbial communities coupled to global patterns of cutaneous gene expression in patients with atopic dermatitis or psoriasis. The skin microbiota is analysed by 16S amplicon or whole genome sequencing and the skin transcriptome by microarrays, followed by integration of the data layers. We find that atopic dermatitis and psoriasis can be classified by distinct microbes, which differ from healthy volunteers microbiome composition. Atopic dermatitis is dominated by a single microbe (Staphylococcus aureus), and associated with a disease relevant host transcriptomic signature enriched for skin barrier function, tryptophan metabolism and immune activation. In contrast, psoriasis is characterized by co-occurring communities of microbes with weak associations with disease related gene expression. Our work provides a basis for biomarker discovery and targeted therapies in skin dysbiosis.
SummaryGGDEF and EAL domain proteins are involved in the turnover of the novel secondary messenger cyclicdi(3 ¢AE 5 ¢ )-guanylic acid (c-di-GMP) in many bacteria. In this work the role of the 12 GGDEF domain proteins encoded by the Salmonella enterica serovar Typhimurium ( S. Typhimurium) chromosome in rdar morphotype development was investigated. Previously, it was shown that the GGDEF domain protein AdrA activated the biosynthesis of cellulose by production of c-di-GMP. Enhancement of the c-di-GMP levels by overexpression of the GGDEF domain protein AdrA did lead to the activation of curli fimbriae biosynthesis through the elevated expression of CsgD and CsgA. Although knock-out of the chromosomal copy of adrA influenced CsgA expression, CsgD expression was not altered, although more than half of the total cellular c-di-GMP was produced by AdrA at 16 h of growth. On the other hand, chromosomally encoded GGDEF-EAL domain proteins STM2123 and STM3388 were required to additively activate CsgD expression on a transcriptional and post-transcriptional level. Enhanced c-di-GMP levels did overcome temperature regulation of rdar morphotype expression by activation of curli fimbriae as well as cellulose biosynthesis through CsgD expression. Thus in the regulatory cascade leading to rdar morphotype expression c-di-GMP activates several subsequent steps in the network.
Expression of multicellular behaviour (rdar morphotype) is a characteristic of wild-type Salmonella typhimurium strains. The key target for the regulation of rdar morphotype expression is the agfD promoter. The regulation of two rdar morphotypes, regulated and semi-constitutive (the latter differs from the former by the insertion of A after position -17), by various environmental conditions was studied using transcriptional fusions to the regulated and semi-constitutive agfD promoters by Western blot analysis and phenotypic analysis of the rdar morphotype. AgfD promoter activities were strongly dependent on oxygen tension. Expression maxima were observed in rich medium under microaerophilic conditions and in minimal medium under aerobic conditions. The regulated rdar morphotype was only expressed under conditions of maximal promoter activity. Glucose did not influence rdar morphotype expression, and the two promoters showed no consistent response to pH. In the stationary phase of growth, nitrogen and phosphate depletion were found to be signals that switch on the agfD promoters. In the logarithmic phase of growth, ethanol was the stress signal that enhanced rdar morphotype expression. The results indicate that, although the regulated and semi-constitutive agfD promoters are key factors in the grade of expression of the multicellular behaviour, common signals such as oxygen tension, depletion of nutrients and ethanol vary their levels of expression significantly.
SummaryThe starvation-induced csgD gene of Salmonella typhimurium encodes for the positive transcriptional regulator of extracellular matrix components curli fimbriae and cellulose. To analyse regulatory elements of csgD promoter ( PcsgD ) response genetic studies combined with in vitro experiments were performed. Six binding sites (D1 to D6) for OmpR, a transcriptional regulator, were identified by gel shifts and DNase I footprints. While ompR is required for PcsgD expression, binding of OmpR-P to D2 centred immediately upstream of D1 at position ----70.5 is proposed to repress PcsgD activity. The elevated expression of regulated and semiconstitutive PcsgD in response to microaerophilic conditions required integration host factor (IHF). Subsequently, two IHF-binding sites were identified up-and downstream of PcsgD . IHF competes with OmpR-P for binding at its upstream site IHF1, which overlaps with D3-D6 and thereby modulates the response to microaerophilic conditions. A complex regulatory network involving IHF, H-NS and OmpR is proposed whereby the nucleo-complex composition in the csgD -csgBA intergenic region is altered in response to oxygen tension.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.