In recent years, core/shell nanohybrids containing a nanoparticle core and a distinct surrounding shell of polymer brushes have received extensive attention in nanoelectronics, nanophotonics, catalysis, nanopatterning, drug delivery, biosensing, and many others. From the large variety of existing polymerization methods on the one hand and strategies for grafting onto nanoparticle surfaces on the other hand, the combination of grafting-from with controlled radical polymerization (CRP) techniques has turned out to be the best suited for synthesizing these well-defined core/shell nanohybrids and is known as surface-initiated CRP. Most common among these are surface-initiated atom transfer radical polymerization (ATRP), surface-initiated reversible addition-fragmentation chain transfer (RAFT) polymerization, and surface-initiated nitroxide-mediated polymerization (NMP). This review highlights the state of the art of growing polymers from nanoparticles using surface-initiated CRP techniques. We focus on mechanistic aspects, synthetic procedures, and the formation of complex architectures as well as novel properties. From the vast number of examples of nanoparticle/polymer hybrids formed by surface-initiated CRP techniques, we present nanohybrid formation from the particularly important and most studied silica nanoparticles, gold nanocrystals, and proteins which can be regarded as bionanoparticles
Despite the rapid development of Pickering interfacial catalysis (PIC) at liquid-liquid interfaces with chemocatalysts, the use of unstable biocatalysts at emulsion interfaces remains a technical challenge. Herein, we present a Pickering interfacial biocatalysis (PIB) platform based on robust and recyclable enzyme-polymer conjugates that act as both catalytic sites and stabilizers at the interface of Pickering emulsions. The conjugates were prepared by growing poly(N-isopropylacrylamide) on a fragile enzyme, benzaldehyde lyase, under physiological conditions. The mild in situ conjugation process preserved the enzyme structure, and the conjugates were used to emulsify a water-organic two-phase system into a stable Pickering emulsion, leading to a significantly larger interfacial area and a 270-fold improvement in catalytic performance as compared to the unemulsified two-phase system. The PIB system could be reused multiple times. Conjugates of other enzymes were also fabricated and applied for cascade reactions.
This review summarizes the interdisciplinary application of sortase-mediated ligation in protein and cell modification, protein–polymer conjugates, and immobilization of proteins, among others.
This work introduces a synthesis of well-defined thermo and pH dual-responsive poly(N-isopropylacrylamide)-b-poly(4-vinylpyridine)grafted silica nanoparticles (SNPs-g-PNIPAM-b-P4VP) via surface-initiated atom transfer radical polymerization (ATRP). ATRP initiators were attached onto the surfaces of silica nanoparticles followed by ATRP of Nisopropylacrylamide (NIPAM). During the surface-initiated ATRP, free sacrificial initiator and halogen exchange were utilized to render the polymerization in a controlled manner. Because of the retention of the polymer chain's end-group functionality, chain extension with 4-vinylpyridine (4VP) from the obtained PNIPAM-grafted SNPs (SNPs-g-PNIPAM) was successfully conducted. Kinetics of the chain extension was studied in detail, showing the livingness of this reinitiation process. Subsequent quaternization of the outer P4VP block with methyl iodide led to the synthesized hybrid nanoparticles being well dispersed in aqueous solution. This well dispersibility affords the possibility to study the pH-and thermoresponsive behavior of the diblock copolymer chains on the nanoparticle surface.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.