Mathematical models of disease transmission are used to improve our understanding of patterns of infection and to identify factors influencing them. During recent public and animal health crises, such as pandemic influenza, Ebola, Zika, foot-and-mouth disease, models have made important contributions in addressing policy questions, especially through the assessment of the trajectory and scale of outbreaks, and the evaluation of control interventions. However, their mathematical formulation means that they may appear as a "black box" to those without the appropriate mathematical background. This may lead to a negative perception of their utility for guiding policy, and generate expectations, which are not in line with what these models can deliver. It is therefore important for policymakers, as well as public health and animal health professionals and researchers who collaborate with modelers and use results generated by these models for policy development or research purpose, to understand the key concepts and assumptions underlying these models. The software application epidemix (http://shinyapps.rvc.ac.uk) presented here aims to make mathematical models of disease transmission accessible to a wider audience of users. By developing a visual interface for a suite of eight models, users can develop an understanding of the impact of various modelling assumptions - especially mixing patterns - on the trajectory of an epidemic and the impact of control interventions, without having to directly deal with the complexity of mathematical equations and programming languages. Models are compartmental or individual-based, deterministic or stochastic, and assume homogeneous or heterogeneous-mixing patterns (with the probability of transmission depending on the underlying structure of contact networks, or the spatial distribution of hosts). This application is intended to be used by scientists teaching mathematical modelling short courses to non-specialists - including policy makers, public and animal health professionals and students - and wishing to develop hands-on practicals illustrating key concepts of disease dynamics and control.
The reporting of outputs from health surveillance systems should be done in a near real-time and interactive manner in order to provide decision makers with powerful means to identify, assess, and manage health hazards as early and efficiently as possible. While this is currently rarely the case in veterinary public health surveillance, reporting tools do exist for the visual exploration and interactive interrogation of health data. In this work, we used tools freely available from the Google Maps and Charts library to develop a web application reporting health-related data derived from slaughterhouse surveillance and from a newly established web-based equine surveillance system in Switzerland. Both sets of tools allowed entry-level usage without or with minimal programing skills while being flexible enough to cater for more complex scenarios for users with greater programing skills. In particular, interfaces linking statistical softwares and Google tools provide additional analytical functionality (such as algorithms for the detection of unusually high case occurrences) for inclusion in the reporting process. We show that such powerful approaches could improve timely dissemination and communication of technical information to decision makers and other stakeholders and could foster the early-warning capacity of animal health surveillance systems.
Veterinary practitioners have extensive knowledge of animal health from their day-to-day observations of clinical patients. There have been several recent initiatives to capture these data from electronic medical records for use in national surveillance systems and clinical research. In response, an approach to surveillance has been evolving that leverages existing computerized veterinary practice management systems to capture animal health data recorded by veterinarians. Work in the United Kingdom within the VetCompass program utilizes routinely recorded clinical data with the addition of further standardized fields. The current study describes a prototype system that was developed based on this approach. In a 4-week pilot study in New Zealand, clinical data on presentation reasons and diagnoses from a total of 344 patient consults were extracted from two veterinary clinics into a dedicated database and analyzed at the population level. New Zealand companion animal and equine veterinary practitioners were engaged to test the feasibility of this national practice-based health information and data system. Strategies to ensure continued engagement and submission of quality data by participating veterinarians were identified, as were important considerations for transitioning the pilot program to a sustainable large-scale and multi-species surveillance system that has the capacity to securely manage big data. The results further emphasized the need for a high degree of usability and smart interface design to make such a system work effectively in practice. The geospatial integration of data from multiple clinical practices into a common operating picture can be used to establish the baseline incidence of disease in New Zealand companion animal and equine populations, detect unusual trends that may indicate an emerging disease threat or welfare issue, improve the management of endemic and exotic infectious diseases, and support research activities. This pilot project is an important step toward developing a national surveillance system for companion animals and equines that moves beyond emerging infectious disease detection to provide important animal health information that can be used by a wide range of stakeholder groups, including participating veterinary practices.
. (2017) Inferring source attribution from a multi-year multi-source dataset of Salmonella in Minnesota. Zoonoses and Public Health. Permanent WRAP URL:
Porcine reproductive and respiratory syndrome (PRRS) causes far-reaching financial losses to infected countries and regions, including the U.S. The Dr. Morrison’s Swine Health Monitoring Program (MSHMP) is a voluntary initiative in which producers and veterinarians share sow farm PRRS status weekly to contribute to the understanding, in quantitative terms, of PRRS epidemiological dynamics and, ultimately, to support its control in the U.S. Here, we offer a review of a variety of analytic tools that were applied to MSHMP data to assess disease dynamics in quantitative terms to support the decision-making process for veterinarians and producers. Use of those methods has helped the U.S. swine industry to quantify the cyclical patterns of PRRS, to describe the impact that emerging pathogens has had on that pattern, to identify the nature and extent at which environmental factors (e.g., precipitation or land cover) influence PRRS risk, to identify PRRS virus emerging strains, and to assess the influence that voluntary reporting has on disease control. Results from the numerous studies reviewed here provide important insights into PRRS epidemiology that help to create the foundations for a near real-time prediction of disease risk, and, ultimately, will contribute to support the prevention and control of, arguably, one of the most devastating diseases affecting the North American swine industry. The review also demonstrates how different approaches to analyze and visualize the data may help to add value to the routine collection of surveillance data and support infectious animal disease control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.