Diabetic retinopathy is a leading cause of adult vision loss and blindness. Much of the retinal damage that characterizes the disease results from retinal vascular leakage and nonperfusion. Diabetic retinal vascular leakage, capillary nonperfusion, and endothelial cell damage are temporary and spatially associated with retinal leukocyte stasis in early experimental diabetes. Retinal leukostasis increases within days of developing diabetes and correlates with the increased expression of retinal intercellular adhesion molecule-1 (ICAM-1) and CD18. Mice deficient in the genes encoding for the leukocyte adhesion molecules CD18 and ICAM-1 were studied in two models of diabetic retinopathy with respect to the long-term development of retinal vascular lesions. CD18-/- and ICAM-1-/- mice demonstrate significantly fewer adherent leukocytes in the retinal vasculature at 11 and 15 months after induction of diabetes with STZ. This condition is associated with fewer damaged endothelial cells and lesser vascular leakage. Galactosemia of up to 24 months causes pericyte and endothelial cell loss and formation of acellular capillaries. These changes are significantly reduced in CD18- and ICAM-1-deficient mice. Basement membrane thickening of the retinal vessels is increased in long-term galactosemic animals independent of the genetic strain. Here we show that chronic, low-grade subclinical inflammation is responsible for many of the signature vascular lesions of diabetic retinopathy. These data highlight the central and causal role of adherent leukocytes in the pathogenesis of diabetic retinopathy. They also underscore the potential utility of anti-inflammatory treatment in diabetic retinopathy.
Bax is a key regulator of apoptosis that, under cell stress, accumulates at mitochondria, where it oligomerizes to mediate the permeabilization of the mitochondrial outer membrane leading to cytochrome c release and cell death. However, the underlying mechanism behind Bax function remains poorly understood. Here, we studied the spatial organization of Bax in apoptotic cells using dual-color single-molecule localization-based super-resolution microscopy. We show that active Bax clustered into a broad distribution of distinct architectures, including full rings, as well as linear and arc-shaped oligomeric assemblies that localized in discrete foci along mitochondria. Remarkably, both rings and arcs assemblies of Bax perforated the membrane, as revealed by atomic force microscopy in lipid bilayers. Our data identify the supramolecular organization of Bax during apoptosis and support a molecular mechanism in which Bax fully or partially delineates pores of different sizes to permeabilize the mitochondrial outer membrane.
This work presents a combined light and electron microscopical approach to investigate the initial breakdown of the retinal pigment epithelium (RPE) and choriocapillaris (CC) in age-related macular degeneration (AMD). Perimacular sections of 12 dry and wet AMD eyes (82 ± 15 years) and 7 age-matched controls (75 ± 10 years) without retinal pathology were investigated. Disease progression was classified into 5 stages of retinal degeneration to investigate the concurrent CC breakdown. Special emphasis was laid on transitions where intact CC-RPE-retina complexes went over into highly atrophied areas. AMD sections showed elevated loss of photoreceptors, RPE and CC (p < 0.01), and thickened Bruch's membrane with increased basal laminar and linear deposits compared with controls. Up to 27% of the CC was lost in controls although RPE and retina were still intact. This primary loss of CC further increased with AMD (up to 100%). The data implicate that CC breakdown already occurs during normal aging and precedes degeneration of the RPE and retina with AMD, defining AMD as a vascular disease. Particular attention should be given to the investigation of early AMD stages and transitional stages to the late stage that reveal a possible sequence of degenerative steps with aging and AMD.
Retinal pigment epithelium (RPE) is a monolayer of cuboidal cells that is strategically placed between the rod and cone photoreceptors and the vascular bed of the choriocapillaris. It has many important functions, such as phagocytic uptake and breakdown of the shedded photoreceptor membranes, uptake, processing, transport and release of vitamin A (retinol), setting up the ion gradients within the interphotoreceptor matrix, building up the blood-retina barrier, and providing all transport from blood to the retina and back. This short review focuses on the role of the pigment granules in RPE. Although the biology of the pigment granules has been neglected in the past, they do seem to be involved in many important functions, such as protection from oxidative stress, detoxification of peroxides, and binding of zinc and drugs, and, therefore, serve as a versatile partner of the RPE cell. Melanin plays a role in the development of the fovea and routing of optic nerves. New findings show that the melanin granules are connected to the lysosomal degradation pathway. Most of these functions are not yet understood. Deficit of melanin pigment is associated with age-related macula degeneration, the leading cause of blindness.
Autosomal dominant optic atrophy (adOA) is a juvenile onset, progressive ocular disorder characterized by bilateral loss of vision, central visual field defects, colour vision disturbances, and optic disc pallor. adOA is most frequently associated with mutations in OPA1 encoding a dynamin-related large GTPase that localizes to mitochondria. Histopathological studies in adOA patients have shown a degeneration of retinal ganglion cells (RGCs) and a loss of axons in the optic nerve. However little is known about the molecular mechanism and pathophysiology of adOA due to the lack of appropriate in vivo models. Here we report a first mouse model carrying a splice site mutation (c.1065 + 5G --> A) in the Opa1 gene. The mutation induces a skipping of exon 10 during transcript processing and leads to an in-frame deletion of 27 amino acid residues in the GTPase domain. Western blot analysis showed no evidence of a shortened mutant protein but a approximately 50% reduced OPA1 protein level supporting haploinsufficiency as a major disease mechanism in adOA. Homozygous mutant mice die in utero during embryogenesis with first notable developmental delay at E8.5 as detected by magnetic resonance imaging (MRI). Heterozygous mutants are viable and of normal habitus but exhibit an age-dependent loss of RGCs that eventually progresses to a severe degeneration of the ganglion cell and nerve fibre layer. In addition optic nerves of mutant mice showed a reduced number of axons, and a swelling and abnormal shape of the remaining axons. Mitochondria in these axons showed disorganized cristae structures. All these defects recapitulate crucial features of adOA in humans and therefore document the validity and importance of this model for future research.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.