Objectives Current repair procedures for articular cartilage cannot restore the tissue’s original form and function because neither changes in its architectural blueprint throughout life nor the respective biological understanding is fully available. We asked whether two unique elements of human cartilage architecture, the chondrocyte-surrounding pericellular matrix (PCM) and the superficial chondrocyte spatial organization (SCSO) beneath the articular surface are congenital, stable or dynamic throughout life. We hypothesized that inducing chondrocyte proliferation in vitro impairs organization and PCM and induces an advanced OA-like structural phenotype of human cartilage. Methods We recorded propidium-iodine-stained fetal and adult cartilage explants, arranged stages of organization into a sequence, and created a lifetime-summarizing SCSO model. To replicate the OA-associated dynamics revealed by our model, and to test our hypothesis, we transduced specifically early OA-explants with hFGF-2 for inducing proliferation. The PCM was examined using immuno- and auto-fluorescence, multiphoton second-harmonic-generation, and scanning electron microscopy. Results Spatial organization evolved from fetal homogeneity, peaked with adult string-like arrangements, but was completely lost in OA. Loss of organization included PCM perforation (local micro-fibrillar collagen intensity decrease) and destruction (regional collagen type VI signal weakness or absence). Importantly, both loss of organization and PCM destruction were successfully recapitulated in FGF-2-transduced explants. Conclusion Induced proliferation of spatially characterized early OA-chondrocytes within standardized explants recapitulated the full range of loss of SCSO and PCM destruction, introducing a novel in vitro methodology. This methodology induces a structural phenotype of human cartilage that is similar to advanced OA and potentially of significance and utility.
BackgroundIn the present study, 4 different metallic implant materials, either partly coated or polished, were tested for their osseointegration and biocompatibility in a pelvic implantation model in sheep.MethodsMaterials to be evaluated were: Cobalt-Chrome (CC), Cobalt-Chrome/Titanium coating (CCTC), Cobalt-Chrome/Zirconium/Titanium coating (CCZTC), Pure Titanium Standard (PTST), Steel, TAN Standard (TANST) and TAN new finish (TANNEW). Surgery was performed on 7 sheep, with 18 implants per sheep, for a total of 63 implants. After 8 weeks, the specimens were harvested and evaluated macroscopically, radiologically, biomechanically (removal torque), histomorphometrically and histologically.ResultsCobalt-Chrome screws showed significantly (p = 0.031) lower removal torque values than pure titanium screws and also a tendency towards lower values compared to the other materials, except for steel. Steel screws showed no significant differences, in comparison to cobalt-chrome and TANST, however also a trend towards lower torque values than the remaining materials. The results of the fluorescence sections agreed with those of the biomechanical test. Histomorphometrically, there were no significant differences of bone area between the groups. The BIC (bone-to-implant-contact), used for the assessment of the osseointegration, was significantly lower for cobalt-chrome, compared to steel (p = 0.001). Steel again showed a lower ratio (p = 0.0001) compared to the other materials.ConclusionThis study demonstrated that cobalt-chrome and steel show less osseointegration than the other metals and metal-alloys. However, osseointegration of cobalt-chrome was improved by zirconium and/or titanium based coatings (CCTC, TANST, TAN, TANNEW) being similar as pure titanium in their osseointegrative behavior.
Aseptic loosening of artificial hip joints is believed to be influenced by the design and orientation of the implant. It is hypothesised that variations in implant anteversion and offset lead to changes in the loading of the proximal femur, causing critical conditions to both the bone and cement. The goal of this study was therefore to analyse the role of these parameters on loading, bone strains and cement stresses in total hip arthroplasty (THA). A validated musculo-skeletal model was used for the analysis of muscle and joint contact forces during walking and stair climbing. Two different anteversion angles (4 degrees vs. 24 degrees ) and prostheses offsets (standard vs. long) were analysed. The loads for each case were applied to a cemented THA finite element model. Generally, stair climbing caused higher bone strains and cement stresses (max. +25%) than walking. Variations in anteversion and offset caused changes in the loading environment, bone strain distribution and cement stresses. Compared to the standard THA configuration, cement stresses were raised by increasing anteversion (max. +52%), offset (max. +5%) and their combination (max. +67%). Femoral anteversion, offset and their combination may therefore lead to an increased risk of implant loosening. Analyses of implant survival should consider this as a limiting factor in THA longevity. In clinical practice, implant orientation, especially in regard to pre- and post-operative anteversion, should be considered to be more critical.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.