The close contact between household pets and people offers favourable conditions for bacterial transmission. In this article, the aetiology, prevalence, transmission, impact on human health and preventative measures are summarized for selected bacterial zoonoses transmissible by household pets. Six zoonoses representing distinct transmission routes were selected arbitrarily based on the available information on incidence and severity of pet-associated disease caused by zoonotic bacteria: bite infections and cat scratch disease (physical injuries), psittacosis (inhalation), leptospirosis (contact with urine), and campylobacteriosis and salmonellosis (faecal-oral ingestion). Antimicrobial resistance was also included due to the recent emergence of multidrug-resistant bacteria of zoonotic potential in dogs and cats. There is a general lack of data on pathogen prevalence in the relevant pet population and on the incidence of human infections attributable to pets. In order to address these gaps in knowledge, and to minimize the risk of human infection, actions at several levels are recommended, including: (1) coordinated surveillance of zoonotic pathogens and antimicrobial resistance in household pets, (2) studies to estimate the burden of human disease attributable to pets and to identify risk behaviours facilitating transmission, and (3) education of those in charge of pets, animal caretakers, veterinarians and human medical healthcare practitioners on the potential zoonotic risks associated with exposure to pets. Disease-specific recommendations include incentives to undertake research aimed at the development of new diagnostic tests, veterinary-specific antimicrobial products and vaccines, as well as initiatives to promote best practices in veterinary diagnostic laboratories and prudent antimicrobial usage.
BackgroundBacterial urinary tract infection (UTI) is a common reason for antimicrobial therapy in dogs.A reported increase in multi-drug resistance in canine bacterial pathogens, including resistance to extended-spectrum cephalosporins (ESC) is of concern as antimicrobial resistance complicates therapy in dogs. In addition, it is a possible public health concern.The objectives of this study were to investigate the relative prevalence of pathogens in urine samples from dogs with urinary tract infection sampled at referral hospitals, clinics and mixed veterinary practices and to investigate if this was influenced by sample material or by contamination of the culture. The second objective was to assess the susceptibility patterns to clinically relevant antimicrobials and to investigate if this was influenced by whether the samples originated from smaller clinics or from referral hospitals and to perform active screening for the presence of Enterobacteriaceae resistant to ESC.ResultsEscherichia coli was the most frequently isolated pathogen (68%) followed by staphylococci (11%).E. coli isolates were found significantly more often in pure culture than in contaminated samples. Staphylococcus pseudintermedius and Staphylococcus aureus isolates were significantly more prevalent in pre-incubated samples compared to samples submitted as non-incubated media.Susceptibility to the majority of the tested first-line antimicrobials was common. Multiresistance was rare, and these isolates were all susceptible to at least one relevant antimicrobial. Isolates in samples from small animal clinics or mixed veterinary practices were less likely to be susceptible compared to isolates originating from referral animal hospitals. ESC-resistant Enterobacteriacae isolates were found in one per cent of the positive cultures. Bacteria with transferable ESC resistance were confirmed in one dog. The gene demonstrated was blaCMY2.ConclusionsChoice of sample material might influence the possibility of detecting Staphylococcus pseudintermedius and Staphylococcus aureus isolates in clinical cases of UTI in dogs. Based on the study results, use of first-line antimicrobials is a rational empirical antimicrobial therapy for the studied dog population.E. coli was the most prevalent pathogen, but prevalence of infection with ESC resistant Enterobacteriaceae including E. coli was low, as such isolates were found in only one per cent of the positive cultures.
BackgroundMethicillin-resistant S. pseudintermedius strains (MRSP) are reported with increasing frequency in bacterial cultures from dogs. The objectives of this study were to determine whether MRSP could be found in dogs several months after a clinically apparent infection and whether the length of carriage varied depending on systemic antimicrobial treatment, diagnosis at time of the first positive MRSP culture and the presence of skin disease or wounds. Thirty-one dogs previously diagnosed with a clinical infection were sampled repeatedly for a minimum of eight months or, with the exception of two dogs, until two consecutive negative results were obtained. Five specified locations were sampled, and the results were evaluated to determine future recommendations concerning sample strategies when screening for MRSP carriage. Information was collected from medical records and questionnaires to evaluate factors that may influence length of carriage.ResultsThe overall median length of MRSP carriage was 11 months (48 weeks). The presence of wounds and signs of dermatitis did not influence length of carriage. Systemic treatment for three weeks or longer with antimicrobial agents to which the bacterium was resistant was associated with prolonged carriage compared to dogs treated for a shorter period of time. Three of five dogs treated with an antimicrobial to which their MRSP-isolates were susceptible (tetracycline) were found to still be MRSP-positive when sampled after the end of treatment. Wound samples had the highest positive MRSP yield (81%) for the positive sample sites, compared to less than 70% for each of the other four sample sites. Cultures from the nostrils were less likely to detect MRSP carriage relative to the pharynx, perineum, wounds and the corner of the mouth.ConclusionsDogs can carry MRSP for more than a year after a clinically apparent infection. Systemic antimicrobial treatment of infections with antimicrobial agents to which the MRSP-bacteria are resistant should be avoided when possible in dogs with possible or confirmed MRSP carriage or infection, since it may prolong time of MRSP carriage. Simultaneous sampling of pharynx, perineum, and the corner of the mouth as well as wounds when present is recommended when screening for MRSP. Cultures from nostrils were shown to be less likely to detect MRSP carriage.
BackgroundSurgical site infection (SSI) is a common nosocomial infection in dogs and a growing concern in veterinary hospitals as an increase in multidrug-resistant pathogens is reported. Despite the need for rational and prudent antimicrobial use, few peer-reviewed and published veterinary studies have investigated the pathogenic growth including susceptibility patterns of the isolated pathogens in canine SSIs.The first objective of the present study was to estimate the distribution of bacterial pathogens in dogs with SSI and to investigate whether this was influenced by type of surgical procedure (clean, clean-contaminated, contaminated or dirty), duration of hospitalization, wound classification and depth of the infection, or antimicrobial treatment. The second objective was to assess susceptibility patterns to clinically relevant antimicrobials.During three years, four animal referral hospitals and three small animal clinics submitted bacterial swabs from canine SSIs for culture and susceptibility, together with a questionnaire completed by the attending clinician.ResultsApproximately two thirds of the in total 194 isolates were staphylococci. Staphylococcus pseudintermedius was the most prevalent finding (46%) followed by beta haemolytic Streptococcus spp. (24%). No associations between distribution of the isolated pathogens and classification of the surgical procedure, duration of hospitalization or depth of the SSI were shown, with the exception of Escherichia coli isolates being significantly more often found in deep wound infections than in superficial skin infections.Overall the possibilities of finding first generations antimicrobials to treat the SSIs included in the study were favorable, as the isolated pathogens were mostly without acquired antimicrobial resistance and multidrug resistance was uncommon. There were only three cases of methicillin-resistant S. pseudintermedius-infections (one percent of all isolates), one case of extended-spectrum beta-lactamase producing E. coli-infection, and no methicillin-resistant Staphylococcus aureus infections.ConclusionsNone of the investigated factors were shown to influence the distribution of bacterial pathogens. The majority of SSIs were caused by staphylococci, and S. pseudintermedius was the most prevalent pathogen. Based on the study results, use of first-line antimicrobials prior to receiving culture and susceptibility results is a rational empirical antimicrobial therapy for the studied dog population.
Objectives The aim of this study was to describe the clinical picture in cats with alpha-chloralose (AC) intoxication and to confirm AC in serum from suspected cases of AC poisoning. Methods Suspected cases of AC poisoning were identified in patient records from a small animal university hospital from January 2014 to February 2020. Clinical signs of intoxication described in respective records were compiled, the cats were graded into four intoxication severity scores and hospitalisation time and mortality were recorded. Surplus serum from select cases in late 2019 and early 2020 was analysed to detect AC with a quantitative ultra-high performance liquid chromatography tandem mass spectrometry analysis, and the AC concentration was compared with the respective cat’s intoxication severity score. Results Serum from 25 cats was available for analysis and AC poisoning was confirmed in all. Additionally, 78 cats with a clinical suspicion of AC intoxication were identified in the patient records, most of which presented from September to April. The most common signs of intoxication were ataxia, tremors, cranial nerve deficits and hyperaesthesia. The prevalence of clinical signs and intoxication severity differed from what has previously been reported, with our population presenting with less severe signs and no deaths due to intoxication. The majority had a hospitalisation time <48 h, irrespective of intoxication severity score. Conclusions and relevance This study describes the clinical signs and prognosis in feline AC intoxication. There were no mortalities in confirmed cases, indicating that AC-poisoned cats have an excellent prognosis when treated in a timely manner. Recognition of AC intoxication as a differential diagnosis for acute onset of the described neurological signs in areas where AC exposure is possible may influence clinical decision-making and help avoid excessive diagnostic procedures. A severe clinical picture upon presentation could be misinterpreted as a grave prognosis and awareness about AC poisoning may avoid unnecessary euthanasia.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.