Thylakoid and cytoplasmic membranes of the cyanobacterium Syncchocystis sp. PCC 6803 were purified by sucrose gradient centrifugation. Both membranes oxidize NADH in a rotenone-sensitive reaction. Antibodies prepared against psbG/ndhKand ndhJ fusion proteins detect the corresponding polypeptides in both membrane preparations. This demonstrates that a NADH-dehydrogenase, homologous to the mitochondrial NADHubiquinone-oxidoreductase (complex I of the respiratory chain) is present in cyanobacteria, The NADH-dehydrogenase can be solubilized with the detergent /?-D-dodecylmaltoside. Sedimentation analysis of the solubilized enzyme on a sucrose gradient indicates that it is a multisubunit protein complex.
An antibody against the NDH‐K subunit of the NAD(P)H‐dehydrogenase from the cyanobacterium Synechocystis sp. PCC6803 was used to isolate a subcomplex of the enzyme from Triton X‐100 solubilized total membranes by immunoaffinity chromatography. The isolated subcomplex consisted of seven major polypeptides with molecular masses of 43, 27, 24, 21, 18, 14 and 7 kDa. The amino‐terminal amino acid sequences of the polypeptides were determined. By comparing the sequences with the amino acid sequences deduced from DNA, three proteins were identified as NDH‐H (43 kDa), NDH‐K (27 kDa) and NDH‐I (24 kDa). A fourth subunit (NDH‐J, 21 kDa) was identified by Western blot analysis with an NDH‐J antibody.
Two collections of Arabidopsis GAL4 enhancer trap lines were screened for light-intensity dependent reporter gene activation. Line N9313 was isolated for its strong light-intensity regulation. The T-DNA element trapped distant enhancers of the SIG5 promoter, which drives expression of a sigma factor involved in regulation of chloroplast genes for photosystem II core proteins. The T-DNA insertion 715 bp upstream of the transcription initiation site splits the promoter in a distal and proximal part. Both parts are sensitive to blue and red light and depend on photosynthetic electron transport activity between photosystem II and the plastoquinone pool. The mainblue-light sensitivity is localized within a 196-bp sequence (–887 to –691 bp) in the proximal promoter region It is preferentially CRY1 and PHYB controlled. Type-I and type-II phytochromes mediate red-light sensitivity via various promoter elements spread over the proximal and distal upstream region. This work characterizes SIG5 as an anterograde control factor of chloroplast gene expression, which is controlled by chloroplast signals in a retrograde manner.
Abstract. The plastid genomes of higher plants contain eleven reading frames (ndhA-K) that are homologous to genes encoding subunits of the mitochondrial NADHubiquinone-oxidoreductase (complex I). The carboxyterminal end of the NDH-H subunit from rice (Oryza sativa L.) was expressed as a fusion protein in Escherichia coli and antibodies against the fusion protein were generated in rabbits. The antibody was used to study the expression of NDH-H, and the following results were obtained: (i) NDH-H is expressed in mono-and dicotyledonous plants, (ii) NDH-H is localized on the stroma lamellae of the thylakoid membrane and (iii) NDH-H is expressed in etioplasts. Together with the finding that two other ndh genes (ndhI and ndhK) are expressed in plastids, these results point to the existence of an NAD(P)H-plastoquinone-oxidoreductase on the thylakoid membrane. The possible function of the enzyme in plastids is discussed and it is suggested that it works in balancing the ATP/ADP and the NADPH/NADP ratios during changing external (i.e. light) or internal (i.e. ATP and NADPH demands of biosynthetic pathways of the plastid) conditions.
The plastid DNA of higher plants contains eleven reading frames that are homologous to subunits of the mitochondrial NADH-ubiquinone oxidoreductase (complex I). The genes are expressed, but a plastid NAD(P)H dehydrogenase has not yet been isolated and the function of the enzyme in plastid metabolism is unknown. Cyanobacteria also contain a NADH dehydrogenase that is homologous to the mitochondrial complex I. The enzyme is sensitive to rotenone and is located on the cytoplasmic and the thylakoid membrane. We report here the sequence of five subunits (ndhA, -I, G, -E and -D) of the NADH dehydrogenase from the unicellular cyanobacterium Synechocystis sp. PCC6803. As in plastid DNA, the genes ndh(A-I-G-E) are clustered and probably constitute an operon. The ndhD gene is associated with a gene encoding an iron-sulphur protein of photosystem I (psaC) as in plastid DNA. In contrast to the situation in plastids, psaC and ndhD are not cotranscribed but transcribed from opposite strands. The deduced amino acid sequence of the cyanobacterial polypeptides is more similar to the corresponding plastid (40-68% identity) than to the corresponding mitochondrial subunits (17-39% identity). Thus, the cyanobacterial NADH-dehydrogenase provides a prokaryotic model system which is more suitable to genetic analysis than the enzyme of plastids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.