Background: Accurate lung cancer classification is crucial to guide therapeutic decisions. However, histological subtyping by pathologists requires tumor tissue-a necessity that is often intrinsically associated with procedural difficulties. The analysis of circulating tumor DNA present in minimal-invasive blood samples, referred to as liquid biopsies, could therefore emerge as an attractive alternative. Methods: Concerning adenocarcinoma, squamous cell carcinoma, and small cell carcinoma, our proof of concept study investigates the potential of liquid biopsy-derived copy number alterations, derived from single-end shallow whole-genome sequencing (coverage 0.1-0.5×), across 51 advanced stage lung cancer patients. Results: Genomic abnormality testing reveals anomalies in 86.3% of the liquid biopsies (16/20 for adenocarcinoma, 13/16 for squamous cell, and 15/15 for small cell carcinoma). We demonstrate that copy number profiles from formalin-fixed paraffin-embedded tumor biopsies are well represented by their liquid equivalent. This is especially valid within the small cell carcinoma group, where paired profiles have an average Pearson correlation of 0.86 (95% CI 0.79-0.93). A predictive model trained with public data, derived from 843 tissue biopsies, shows that liquid biopsies exhibit multiple deviations that reflect histological classification. Most notably, distinguishing small from non-small cell lung cancer is characterized by an area under the curve of 0.98 during receiver operating characteristic analysis. Additionally, we investigated how deeper paired-end sequencing, which will eventually become feasible for routine diagnosis, empowers tumor read enrichment by insert size filtering: for all of the 29 resequenced liquid biopsies, the tumor fraction could be increased in silico, thereby "rescuing" three out of five cases with previously undetectable alterations.(Continued on next page)
Background: Lung cancer can be detected by measuring the patient’s plasma metabolomic profile using nuclear magnetic resonance (NMR) spectroscopy. This NMR-based plasma metabolomic profile is patient-specific and represents a snapshot of the patient’s metabolite concentrations. The onset of non-small cell lung cancer (NSCLC) causes a change in the metabolite profile. However, the level of metabolic changes after complete NSCLC removal is currently unknown. Patients and methods: Fasted pre- and postoperative plasma samples of 74 patients diagnosed with resectable stage I-IIIA NSCLC were analyzed using 1H-NMR spectroscopy. NMR spectra (s = 222) representing two preoperative and one postoperative plasma metabolite profile at three months after surgical resection were obtained for all patients. In total, 228 predictors, i.e., 228 variables representing plasma metabolite concentrations, were extracted from each NMR spectrum. Two types of supervised multivariate discriminant analyses were used to train classifiers presenting a strong differentiation between the pre- and postoperative plasma metabolite profiles. The validation of these trained classification models was obtained by using an independent dataset. Results: A trained multivariate discriminant classification model shows a strong differentiation between the pre- and postoperative NSCLC profiles with a specificity of 96% (95% CI [86–100]) and a sensitivity of 92% (95% CI [81–98]). Validation of this model results in an excellent predictive accuracy of 90% (95% CI [77–97]) and an AUC value of 0.97 (95% CI [0.93–1]). The validation of a second trained model using an additional preoperative control sample dataset confirms the separation of the pre- and postoperative profiles with a predictive accuracy of 93% (95% CI [82–99]) and an AUC value of 0.97 (95% CI [0.93–1]). Metabolite analysis reveals significantly increased lactate, cysteine, asparagine and decreased acetate levels in the postoperative plasma metabolite profile. Conclusions: The results of this paper demonstrate that surgical removal of NSCLC generates a detectable metabolic shift in blood plasma. The observed metabolic shift indicates that the NSCLC metabolite profile is determined by the tumor’s presence rather than donor-specific features. Furthermore, the ability to detect the metabolic difference before and after surgical tumor resection strongly supports the prospect that NMR-generated metabolite profiles via blood samples advance towards early detection of NSCLC recurrence.
A multicenter study was performed to determine an optimal workflow for liquid biopsy in a clinical setting. In total, 549 plasma samples from 234 non-small cell lung cancer (NSCLC) patients were collected. Epidermal Growth Factor Receptor (EGFR) circulating cell-free tumor DNA (ctDNA) mutational analysis was performed using digital droplet PCR (ddPCR). The influence of (pre-) analytical variables on ctDNA analysis was investigated. Sensitivity of ctDNA analysis was influenced by an interplay between increased plasma volume (p < 0.001) and short transit time (p = 0.018). Multistep, high-speed centrifugation both increased plasma generation (p < 0.001) and reduced genomic DNA (gDNA) contamination. Longer transit time increased the risk of hemolysis (p < 0.001) and low temperatures were shown to have a negative effect. Metastatic sites were found to be strongly associated with ctDNA detection (p < 0.001), as well as allele frequency (p = 0.034). Activating mutations were detected in a higher concentration and allele frequency compared to the T790M mutation (p = 0.003, and p = 0.002, respectively). Optimization of (pre-) analytical variables is key to successful ctDNA analysis. Sufficient plasma volumes without hemolysis or gDNA contamination can be achieved by using multistep, high-speed centrifugation, coupled with short transit time and temperature regulation. Metastatic site location influenced ctDNA detection. Finally, ctDNA levels might have further value in detecting resistance mechanisms.
We report the case of a patient with suspected hamartoma with slight fluorodeoxyglucose (FDG) uptake on positron emission tomography (PET). Initially, follow-up with repeat computed tomography (CT) scan was proposed. Because of the risk for retro-obstructive pneumonia, and because there was a small increase in diameter of the lesion on CT, thoracotomy was proposed. Pathologic examination revealed a surprising and rare finding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.