Monitoring grassland biomass throughout the growing season is of key importance in sustainable, site-specific management decisions. Precision agriculture applications can support these decisions. However, precision agriculture relies on timely and accurate information on plant parameters with a high spatial and temporal resolution. The use of structural and spectral features derived from unmanned aerial vehicle (UAV)-based image data from low-cost sensors is a promising nondestructive approach to assess plant traits such as above-ground biomass or plant height. Therefore, the main objectives were (1) to evaluate the potential of low-cost UAV-based canopy surface models to monitor sward height as an indicator of grassland biomass, (2) to evaluate the potential of vegetation indices from low-cost UAV-based red-greenblue (RGB) digital image data, and (3) to compare the mentioned methods with established methods for biomass monitoring such as rising plate meters and spectroradiometer-based narrowband vegetation indices over the growing season in 2017, including three cuts. We compared the accuracy of each single UAV-based height feature and vegetation index using a combined multivariate approach to estimate fresh and dry biomass. The heterogeneous sward structure with high spatiotemporal variability led to varying performance in biomass estimation depending on the growths (time between two cuts) and choice of predictor variable. The results showed that biomass prediction by height features provided moderate-to-good results (cross-validation R 2 ¼ 0.57 to 0.73 for dry biomass and 0.43 to 0.79 for fresh biomass), but reference measurements based on rising plate meters were more robust when estimating biomass. The spectral features (RGB-based vegetation indices and spectroradiometerbased vegetation indices) yielded varying accuracy and suitability for biomass prediction. Despite the variability, our findings indicate a promising approach for grassland biomass monitoring. © The Authors. Published by SPIE under a Creative Commons Attribution 4.0 Unported License. Distribution or reproduction of this work in whole or in part requires full attribution of the original publication, including its DOI.
ABSTRACT:Monitoring forage yield throughout the growing season is of key importance to support management decisions on grasslands/pastures. Especially on intensely managed grasslands, where nitrogen fertilizer and/or manure are applied regularly, precision agriculture applications are beneficial to support sustainable, site-specific management decisions on fertilizer treatment, grazing management and yield forecasting to mitigate potential negative impacts. To support these management decisions, timely and accurate information is needed on plant parameters (e.g. forage yield) with a high spatial and temporal resolution. However, in highly heterogeneous plant communities such as grasslands, assessing their in-field variability non-destructively to determine e.g. adequate fertilizer application still remains challenging. Especially biomass/yield estimation, as an important parameter in assessing grassland quality and quantity, is rather laborious. Forage yield (dry or fresh matter) is mostly measured manually with rising plate meters (RPM) or ultrasonic sensors (handheld or mounted on vehicles). Thus the in-field variability cannot be assessed for the entire field or only with potential disturbances. Using unmanned aerial vehicles (UAV) equipped with consumer grade RGB cameras in-field variability can be assessed by computing RGB-based vegetation indices. In this contribution we want to test and evaluate the robustness of RGB-based vegetation indices to estimate dry matter forage yield on a recently established experimental grassland site in Germany. Furthermore, the RGBbased VIs are compared to indices computed from the Yara N-Sensor. The results show a good correlation of forage yield with RGBbased VIs such as the NGRDI with R 2 values of 0.62.
Remote sensing systems based on unmanned aerial vehicles (UAVs) are well suited for airborne monitoring of small to medium-sized farmland in agricultural applications. An imaging system is often used in the form of a multispectral multi-camera system to derive well-established vegetation indices (VIs) efficiently. This study investigates the potential of such a multi-camera system with a novel approach to extend spectral sensitivity from visible-to-near-infrared (VNIR) to short-wave infrared (SWIR) (400–1700 nm) for estimating forage mass from an aerial carrier platform. The system test was performed in a grassland fertilizer trial in Germany near Cologne in late July 2019. Within 37 min, a spectral response in four different wavelength bands in the NIR and SWIR range was acquired during two consecutive flights. Spectral image data were calibrated to reflectance using two different methods. The resulting reflectance data sets were processed to orthomosaics for each wavelength band. From these orthomosaics for both calibration methods, the four-band NIR/SWIR GnyLi VI and the two-band NIR/SWIR Normalized Ratio Index (NRI), were calculated. During both UAV flights, spectral ground truth data were recorded with a spectroradiometer on 12 plots in total for validation of camera-based spectral data. The camera and spectroradiometer data sets were directly compared in resulting reflectance and further analyzed with simple linear regression (SLR) models to predict dry matter (DM) yield. In the camera-based SLRs, the NRI performed best with $$R^2$$ R 2 of 0.73 and 0.75 (RMSE: 0.18 and 0.17) before the GnyLi with $$R^{2}$$ R 2 of 0.71 and 0.73 (RMSE: 0.19 and 0.18). These results clearly indicate the potential of the camera system for applications in forage mass monitoring.
<p><strong>Abstract.</strong> Forage monitoring in grassland is an important task to support management decisions. Spatial data on (i) yield,(ii) quality, and (iii) floristic composition are of interest. The spatio-temporal variability in grasslands is significant and requires fast and low-cost methods for data delivery. Therefore, the overarching aim of this contribution is the investigation of low-cost and non-calibrated UAV-derived RGB imagery for forage monitoring. Study area is the Rengen Grassland Experiment (RGE) in Germany which is a long-term field experiment since 1941. Due to the experiment layout, destructive biomass sampling during the growing period was not possible. Hence, non-destructive Rising Plate Meter (RPM) measurements, which are a common method to estimate biomass in grasslands, were carried out. UAV campaigns with a Canon Powershot 110 mounted on a DJI Phantom 2 were conducted in the first growing season in 2014. From the RGB imagery, the RGB vegetation index (RGBVI) and the Grassland Index (GrassI) introduced by Bendig et al. (2015) and Bareth et al. (2015), respectively, were computed. The RGBVI and the GrassI perform very well against the RPM measurements resulting in R<sup>2</sup> of 0.84 and 0.9, respectively. These results indicate the potential of low-cost UAV methods for grassland monitoring and correspond well to the studies of Viljanen et al. (2018) and Näsi et al. (2018).</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.