The most sensitive screening technique for genes that predispose patients for particular cancers is direct sequencing. However, sequencing of complex genes is technically demanding, costly and time-consuming. We have tested alternate screening techniques to find a fast sensitive method for detecting alterations of DNA in the large BRCA1 gene prior to sequencing. Sequencing of this gene is particularly arduous because it lacks clearly defined mutation sites. The single-strand conformation polymorphism (SSCP) technique is one of the most frequently used pre-screening methods but its sensitivity and efficiency is not completely satisfying. We have compared the SSCP assay with a newly developed technique called denaturing high performance liquid chromatography (DHPLC) to screen the BRCAl gene. We studied 23 patients at high risk for early onset breast and ovarian cancer and four controls. In these patients, a total of 113 fragments with sequence variations in the BRCA1 gene could be identified. The DHPLC technique resolved 100% of the DNA alterations that were observed in cycle sequencing. In contrast, mutation analysis by SSCP accounted for 94% of the detected variations. In addition, DHPLC screening allowed us to discriminate between different alterations in a single fragment, because of the characteristic elution profiles of the DNA molecules. Polymorphisms that were present in our samples could be predicted by means of DHPLC testing independently of sequence analysis. We conclude that DHPLC is a highly potent screening method for genetic analyses. It is highly sensitive, efficient and economical and can be automated.
We conducted a large-scale association study to identify genes that influence nonfamilial breast cancer risk using a collection of German cases and matched controls and >25,000 single nucleotide polymorphisms located within 16,000 genes. One of the candidate loci identified was located on chromosome 19p13.2 [odds ratio (OR) ؍ 1.5, P ؍ 0.001]. The effect was substantially stronger in the subset of cases with reported family history of breast cancer (OR ؍ 3.4, P ؍ 0.001). The finding was subsequently replicated in two independent collections (combined OR ؍ 1.4, P < 0.001) and was also associated with predisposition to prostate cancer in an independent sample set of prostate cancer cases and matched controls (OR ؍ 1.4, P ؍ 0.002). High-density single nucleotide polymorphism mapping showed that the extent of association spans 20 kb and includes the intercellular adhesion molecule genes ICAM1, ICAM4, and ICAM5. Although genetic variants in ICAM5 showed the strongest association with disease status, ICAM1 is expressed at highest levels in normal and tumor breast tissue. A variant in ICAM5 was also associated with disease progression and prognosis. Because ICAMs are suitable targets for antibodies and small molecules, these findings may not only provide diagnostic and prognostic markers but also new therapeutic opportunities in breast and prostate cancer.
The micronucleus assay (MNT) in human lymphocytes is frequently used to assess chromosomal damage as a consequence of environmental mutagen exposure, to assess the effect of mutagens or to search for reduced DNA repair capacity after a mutagenic challenge. We have established an automated scoring procedure for the cytokinesis blocked MNT based on computerized image analysis (Metasystems Metafer 4 version 2.12). To evaluate the results we used the reproducibility of counts, established a dose-response curve for gamma-irradiation and used the ability of the system to differentiate between breast cancer patients and controls as a biological reference, a difference which we had observed before by visual counting. Blood cultures were irradiated with gamma-rays (2 Gy) at the beginning and treated with cytochalasin B during the last 24 h. The slides were stained with Giemsa for visual counting and with DAPI for automated analysis. Our test sample consisted of 73 persons (27 with breast cancer and 26 female and 20 male controls). A comparison between visual counting (controls, mean MN frequency 313) and automated counting (mean MN frequency 106) in slides from the same culture revealed a large drop for the automated counts. However, the automated counts were as reproducible as the visual counts [coefficient of variation (CV) on the sample approximately 20%; CV on repeated counts of the same slides approximately 5%] and both counts were highly correlated. Furthermore, the discrimination between cases and controls improved for automated counting of slides from the same cultures [visual odds rato (OR) < or = 4.0, P = 0.009; automated OR > 16, P < 0.0001], with a strong dependence on the set of parameters used. This improvement was confirmed in a validation sample of an additional 21 controls and 20 cases (OR = 11, P = 0.0018) performed as a prospective or diagnostic test.
IntroductionIn murine breast cancer models, the two interferon-gamma (IFN-γ) inducible chemokines and CXC-chemokine receptor 3 (CXCR3) receptor ligands, monokine induced by γ-interferon (CXCL9) and interferon-γ-inducible protein-10 (CXCL10) impair tumor growth and metastasis formation through recruitment of natural killer (NK) cells and tumor-suppressive T lymphocytes. In human breast cancer, CXCL9 mRNA overexpression correlates with the number of tumor infiltrating lymphocytes and predicts response to different chemotherapeutic regimens. Raising the intratumoral CXCR3 ligand concentration is therefore a possible way to enhance immune intervention in breast cancer. Little is known, however, about expression levels and regulation of these chemokines in human breast cancer. Since the inhibition of cyclooxygenases (COX) has been shown to reduce tumor growth and incidence of metastases in a lymphocytic and IFN-γ dependent manner, we argued that COX isoenzymes are a pharmacologic target to increase intratumoral CXCR3 ligand concentration in human breast cancer.MethodsCXCL9 was visualized in breast cancer specimens by immunohistochemistry, expression levels of CXCL9 and cyclooxygenases were determined by ELISA and western blotting, respectively. For regulation studies, Michigan Cancer Foundation-7 (MCF-7) and M.D. Anderson - Metastatic Breast 231 (MDA-MB 231) breast cancer cells were stimulated with IFN-γ with or without prostaglandin E2 (PGE2) or COX inhibitors (indomethacin, acetylsalicylic acid (ASA), celecoxib). CXCR3 ligand release from cells was measured by ELISA.ResultsWithin the tumor microenvironment, cancer cells are the major source of CXCL9. PGE2 impairs IFN-γ mediated CXCL9 and CXCL10 release from MCF-7 and MDA-MB 231 cells, and inhibition of endogenous cyclooxygenases by indomethacin or ASA correspondingly increases this secretion. Otherwise, high concentrations of the Cyclooxygenase-2 (COX-2) specific antagonist celecoxib have opposite effects and impair CXCL9 and CXCL10 release. In human breast cancer tissue specimens there is an inverse correlation between COX-2 overexpression and CXCL9 concentration, suggesting that the observed in vitro effects are of importance in vivo as well.ConclusionsSuppressing endogenous PGE2 synthesis by cyclooxygenase inhibition increases CXCL9 and CXCL10 release from breast cancer cells and is therefore a pharmacologic candidate to enhance intratumoral immune infiltration. Yet, to this end the unselective COX inhibitors ASA and indomethacin seem preferable to celecoxib that at higher concentrations reduces CXCR3 ligand release most probably due to COX independent mechanisms.
The most sensitive screening technique for genes that predispose patients for particular cancers is direct sequencing. However, sequencing of complex genes is technically demanding, costly and time-consuming. We have tested alternate screening techniques to find a fast sensitive method for detecting alterations of DNA in the large BRCA1 gene prior to sequencing. Sequencing of this gene is particularly arduous because it lacks clearly defined mutation sites. The single-strand conformation polymorphism (SSCP) technique is one of the most frequently used pre-screening methods but its sensitivity and efficiency is not completely satisfying. We have compared the SSCP assay with a newly developed technique called denaturing high performance liquid chromatography (DHPLC) to screen the BRCAl gene. We studied 23 patients at high risk for early onset breast and ovarian cancer and four controls. In these patients, a total of 113 fragments with sequence variations in the BRCA1 gene could be identified. The DHPLC technique resolved 100% of the DNA alterations that were observed in cycle sequencing. In contrast, mutation analysis by SSCP accounted for 94% of the detected variations. In addition, DHPLC screening allowed us to discriminate between different alterations in a single fragment, because of the characteristic elution profiles of the DNA molecules. Polymorphisms that were present in our samples could be predicted by means of DHPLC testing independently of sequence analysis. We conclude that DHPLC is a highly potent screening method for genetic analyses. It is highly sensitive, efficient and economical and can be automated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.