In this paper we give a programmatic overview of parameterized computational complexity in the broad context of the problem of coping with computational intractability. We give some examples of how xed-parameter tractability techniques can deliver practical algorithms in two di erent ways: (1) by providing useful exact algorithms for small parameter ranges, and (2) by providing guidance in the design of heuristic algorithms. In particular, we describe an improved FPT kernelization algorithm for Vertex Cover, a practical FPT algorithm for the Maximum Agreement Subtree (MAST) problem parameterized by the number of species to be deleted, and new general heuristics for these problems based on FPT techniques. In the course of making this overview, we also investigate some structural and hardness issues. We prove that an important naturally parameterized problem in arti cial intelligence, STRIPS Planning (where the parameter is the size of the plan) is complete for W 1]. As a corollary, this implies that k-Step Reachability for Petri Nets is complete for W 1]. We describe how the concept of treewidth can be applied to STRIPS Planning and other problems of logic to obtain FPT results. We describe a surprising structural result concerning the top end of the parameterized complexity hierarchy: the naturally parameterized Graph k-Coloring problem cannot be resolved with respect to XP either by showing membership in XP, or by showing hardness for XP without settling the P = NP question one way or the other.
Recently there has been growing interest among psychologists in human performance on the Euclidean traveling salesperson problem (E-TSP). A debate has been initiated on what strategy people use in solving visually presented E-TSP instances. The most prominent hypothesis is the convex-hull hypothesis, originally proposed by MacGregor and Ormerod (1996). We argue that, in the literature so far, there is no evidence for this hypothesis. Alternatively we propose and motivate the hypothesis that people aim at avoiding crossings.
We establish a refined search tree technique for the parameterized DOMINATING SET problem on planar graphs. Here, we are given an undirected graph and we ask for a set of at most k vertices such that every other vertex has at least one neighbor in this set. We describe algorithms with running times O(8 k n) and O(8 k k + n 3 ), where n is the number of vertices in the graph, based on bounded search trees. We describe a set of polynomial time data-reduction rules for a more general "annotated" problem on black/white graphs that asks for a set of k vertices (black or white) ଁ An extended abstract of this paper appeared under nearly the same title in that dominate all the black vertices. An intricate argument based on the Euler formula then establishes an efficient branching strategy for reduced inputs to this problem. In addition, we give a family examples showing that the bound of the branching theorem is optimal with respect to our reduction rules. Our final search tree algorithm is easy to implement; its analysis, however, is involved.
We propose a new method to build persistent suffix trees for indexing the genomic data. Our algorithm DiGeST (Disk-Based Genomic Suffix Tree) improves significantly over previous work in reducing the random access to the input string and performing only two passes over disk data. DiGeST is based on the two-phase multi-way merge sort paradigm using a concise binary representation of the DNA alphabet. Furthermore, our method scales to larger genomic data than managed before.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.